IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v102y2015i2p345-358..html
   My bibliography  Save this article

On the dependence structure of bivariate recurrent event processes: inference and estimation

Author

Listed:
  • Jing Ning
  • Yong Chen
  • Chunyan Cai
  • Xuelin Huang
  • Mei-Cheng Wang

Abstract

Bivariate or multivariate recurrent event processes are often encountered in longitudinal studies in which more than one type of event is of interest. There has been much research on regression analysis for such data, but little has been done to measure the dependence between recurrent event processes. We propose a time-dependent measure, termed the rate ratio, to assess the local dependence between two types of recurrent event processes. We model the rate ratio as a parametric function of time, and leave unspecified all other aspects of the distribution. We develop a composite likelihood procedure for model fitting and parameter estimation. We show that the proposed estimator is consistent and asymptotically normal. Its finite sample performance is evaluated by simulation and illustrated by an application to a soft tissue sarcoma study.

Suggested Citation

  • Jing Ning & Yong Chen & Chunyan Cai & Xuelin Huang & Mei-Cheng Wang, 2015. "On the dependence structure of bivariate recurrent event processes: inference and estimation," Biometrika, Biometrika Trust, vol. 102(2), pages 345-358.
  • Handle: RePEc:oup:biomet:v:102:y:2015:i:2:p:345-358.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu073
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Ning & Chunyan Cai & Yong Chen & Xuelin Huang & Mei‐Cheng Wang, 2020. "Semiparametric modelling and estimation of covariate‐adjusted dependence between bivariate recurrent events," Biometrics, The International Biometric Society, vol. 76(4), pages 1229-1239, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:102:y:2015:i:2:p:345-358.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.