IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v102y2015i1p239-246..html
   My bibliography  Save this article

A Wilcoxon–Mann–Whitney-type test for infinite-dimensional data

Author

Listed:
  • Anirvan Chakraborty
  • Probal Chaudhuri

Abstract

The Wilcoxon–Mann–Whitney test is a robust competitor of the $t$ test in the univariate setting. For finite-dimensional multivariate non-Gaussian data, several extensions of the Wilcoxon–Mann–Whitney test have been shown to outperform Hotelling's $T^{2}$ test. In this paper, we study a Wilcoxon–Mann–Whitney-type test based on spatial ranks in infinite-dimensional spaces, we investigate its asymptotic properties and compare it with several existing tests. The proposed test is shown to be robust with respect to outliers and to have better power than some competitors for certain distributions with heavy tails. We study its performance using real and simulated data.

Suggested Citation

  • Anirvan Chakraborty & Probal Chaudhuri, 2015. "A Wilcoxon–Mann–Whitney-type test for infinite-dimensional data," Biometrika, Biometrika Trust, vol. 102(1), pages 239-246.
  • Handle: RePEc:oup:biomet:v:102:y:2015:i:1:p:239-246.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu072
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smida, Zaineb & Cucala, Lionel & Gannoun, Ali & Durif, Ghislain, 2022. "A Wilcoxon-Mann-Whitney spatial scan statistic for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    2. Liu, Jiamin & Ma, Shuangge & Xu, Wangli & Zhu, Liping, 2022. "A generalized Wilcoxon–Mann–Whitney type test for multivariate data through pairwise distance," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    3. Graciela Estévez-Pérez & Philippe Vieu, 2021. "A new way for ranking functional data with applications in diagnostic test," Computational Statistics, Springer, vol. 36(1), pages 127-154, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:102:y:2015:i:1:p:239-246.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.