IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v102y2015i1p215-230..html
   My bibliography  Save this article

Multivariate max-stable spatial processes

Author

Listed:
  • Marc G. Genton
  • Simone A. Padoan
  • Huiyan Sang

Abstract

Max-stable processes allow the spatial dependence of extremes to be modelled and quantified, so they are widely adopted in applications. For a better understanding of extremes, it may be useful to study several variables simultaneously. To this end, we study the maxima of independent replicates of multivariate processes, both in the Gaussian and Student-t cases. We define a Poisson process construction and introduce multivariate versions of the Smith Gaussian extreme-value, the Schlather extremal-Gaussian and extremal-t, and the Brown–Resnick models. We develop inference for the models based on composite likelihoods. We present results of Monte Carlo simulations and an application to daily maximum wind speed and wind gust.

Suggested Citation

  • Marc G. Genton & Simone A. Padoan & Huiyan Sang, 2015. "Multivariate max-stable spatial processes," Biometrika, Biometrika Trust, vol. 102(1), pages 215-230.
  • Handle: RePEc:oup:biomet:v:102:y:2015:i:1:p:215-230.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu066
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    2. Hashorva, Enkelejd, 2018. "Representations of max-stable processes via exponential tilting," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2952-2978.
    3. Kim, Mihyun & Kokoszka, Piotr, 2022. "Extremal dependence measure for functional data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Hashorva, Enkelejd & Kume, Alfred, 2021. "Multivariate max-stable processes and homogeneous functionals," Statistics & Probability Letters, Elsevier, vol. 173(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:102:y:2015:i:1:p:215-230.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.