IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i4p815-829..html
   My bibliography  Save this article

Transformed sufficient dimension reduction

Author

Listed:
  • T. Wang
  • X. Guo
  • L. Zhu
  • P. Xu

Abstract

We propose a general framework for dimension reduction in regression to fill the gap between linear and fully nonlinear dimension reduction. The main idea is to first transform each of the raw predictors monotonically and then search for a low-dimensional projection in the space defined by the transformed variables. Both user-specified and data-driven transformations are suggested. In each case, the methodology is first discussed in generality and then a representative method is proposed and evaluated by simulation. The proposed methods are applied to a real dataset.

Suggested Citation

  • T. Wang & X. Guo & L. Zhu & P. Xu, 2014. "Transformed sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 101(4), pages 815-829.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:4:p:815-829.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu037
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao, Chenyang & Feng, Jianfeng, 2017. "Canonical kernel dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 131-148.
    2. Dong, Yuexiao & Yang, Chaozheng & Yu, Zhou, 2016. "On permutation tests for predictor contribution in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 81-91.
    3. Zhou, Jingke & Zhu, Lixing, 2016. "Principal minimax support vector machine for sufficient dimension reduction with contaminated data," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 33-48.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:4:p:815-829.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.