IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i4p755-769..html
   My bibliography  Save this article

Classification with confidence

Author

Listed:
  • Jing Lei

Abstract

A framework for classification is developed with a notion of confidence. In this framework, a classifier consists of two tolerance regions in the predictor space, with a specified coverage level for each class. The classifier also produces an ambiguous region where the classification needs further investigation. Theoretical analysis reveals interesting structures of the confidence-ambiguity trade-off, and the optimal solution is characterized by extending the Neyman–Pearson lemma. We provide general estimating procedures, along with rates of convergence, based on estimates of the conditional probabilities. The method can be easily implemented with good robustness, as illustrated through theory, simulation and a data example.

Suggested Citation

  • Jing Lei, 2014. "Classification with confidence," Biometrika, Biometrika Trust, vol. 101(4), pages 755-769.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:4:p:755-769.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu038
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leying Guan & Robert Tibshirani, 2022. "Prediction and outlier detection in classification problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 524-546, April.
    2. Wei Liu & Frank Bretz & Natchalee Srimaneekarn & Jianan Peng & Anthony J. Hayter, 2019. "Confidence Sets for Statistical Classification," Stats, MDPI, vol. 2(3), pages 1-15, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:4:p:755-769.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.