Inference on multiple correlation coefficients with moderately high dimensional data
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Matsushita, Yukitoshi & Otsu, Taisuke, 2020. "Jackknife empirical likelihood: small bandwidth, sparse network and high-dimension asymptotic," LSE Research Online Documents on Economics 106488, London School of Economics and Political Science, LSE Library.
- Ding, Hao & Qin, Shanshan & Wu, Yuehua & Wu, Yaohua, 2021. "Asymptotic properties on high-dimensional multivariate regression M-estimation," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
- Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2018.
"Inference in Linear Regression Models with Many Covariates and Heteroscedasticity,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1350-1361, July.
- Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2015. "Inference in Linear Regression Models with Many Covariates and Heteroskedasticity," Papers 1507.02493, arXiv.org, revised Jan 2017.
- Cattaneo, Matias D & Jansson, Michael & Newey, Whitney K, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Department of Economics, Working Paper Series qt6rp7p9gs, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Matias Cattaneo & Michael Jansson & Whitney K. Newey, 2017. "Inference in linear regression models with many covariates and heteroskedasticity," CeMMAP working papers CWP03/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Matias Cattaneo & Michael Jansson & Whitney K. Newey, 2017. "Inference in linear regression models with many covariates and heteroskedasticity," CeMMAP working papers 03/17, Institute for Fiscal Studies.
- Najarzadeh, Dariush, 2020. "A simple test for zero multiple correlation coefficient in high-dimensional normal data using random projection," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
- Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
- Yukitoshi Matsushita & Taisuke Otsu, 2019. "Jackknife, small bandwidth and high-dimensional asymptotics," STICERD - Econometrics Paper Series 605, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:748-754.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.