IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i3p673-688..html
   My bibliography  Save this article

The asymptotic inadmissibility of the spatial sign covariance matrix for elliptically symmetric distributions

Author

Listed:
  • Andrew F. Magyar
  • David E. Tyler

Abstract

The asymptotic efficiency of the spatial sign covariance matrix relative to affine equivariant estimators of scatter is studied. In particular, the spatial sign covariance matrix is shown to be asymptotically inadmissible, i.e., the asymptotic covariance matrix of the consistency-corrected spatial sign covariance matrix is uniformly larger than that of its affine equivariant counterpart, namely Tyler’s scatter matrix. Although the spatial sign covariance matrix has often been recommended when one is interested in principal components analysis, its inefficiency is shown to be most severe in situations where principal components are of greatest interest. Simulation shows that the inefficiency of the spatial sign covariance matrix also holds for small sample sizes, and that the asymptotic relative efficiency is a good approximation to the finite-sample efficiency for relatively modest sample sizes.

Suggested Citation

  • Andrew F. Magyar & David E. Tyler, 2014. "The asymptotic inadmissibility of the spatial sign covariance matrix for elliptically symmetric distributions," Biometrika, Biometrika Trust, vol. 101(3), pages 673-688.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:673-688.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu020
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raymaekers, Jakob & Rousseeuw, Peter, 2019. "A generalized spatial sign covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 94-111.
    2. Xu, Yangchang & Xia, Ningning, 2023. "On the eigenvectors of large-dimensional sample spatial sign covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    3. Majumdar, Subhabrata & Chatterjee, Snigdhansu, 2022. "On weighted multivariate sign functions," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    4. Dürre, Alexander & Tyler, David E. & Vogel, Daniel, 2016. "On the eigenvalues of the spatial sign covariance matrix in more than two dimensions," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 80-85.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:673-688.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.