IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i3p613-624..html
   My bibliography  Save this article

Estimation of mean response via the effective balancing score

Author

Listed:
  • Zonghui Hu
  • Dean A. Follmann
  • Naisyin Wang

Abstract

We introduce the effective balancing score for estimation of the mean response under a missing-at-random mechanism. Unlike conventional balancing scores, the proposed score is constructed via dimension reduction free of model specification. Three types of such scores are introduced, distinguished by whether they carry the covariate information about the missingness, the response, or both. The effective balancing score leads to consistent estimation with little or no loss in efficiency. Compared to existing estimators, it reduces the burden of model specification and is more robust. It is a near-automatic procedure which is most appealing when high-dimensional covariates are involved. We investigate its asymptotic and numerical properties, and illustrate its application with an HIV disease study.

Suggested Citation

  • Zonghui Hu & Dean A. Follmann & Naisyin Wang, 2014. "Estimation of mean response via the effective balancing score," Biometrika, Biometrika Trust, vol. 101(3), pages 613-624.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:613-624.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu022
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    2. Lee, Myoung-jae & Lee, Sanghyeok, 2019. "Double robustness without weighting," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 175-180.
    3. Guo, Xu & Fang, Yun & Zhu, Xuehu & Xu, Wangli & Zhu, Lixing, 2018. "Semiparametric double robust and efficient estimation for mean functionals with response missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 325-339.
    4. Lei Wang, 2019. "Dimension reduction for kernel-assisted M-estimators with missing response at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 889-910, August.
    5. Ming-Yueh Huang & Kwun Chuen Gary Chan, 2017. "Joint sufficient dimension reduction and estimation of conditional and average treatment effects," Biometrika, Biometrika Trust, vol. 104(3), pages 583-596.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:613-624.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.