IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i3p553-566..html
   My bibliography  Save this article

Statistical inference methods for recurrent event processes with shape and size parameters

Author

Listed:
  • Mei-Cheng Wang
  • Chiung-Yu Huang

Abstract

This paper proposes a unified framework to characterize the rate function of a recurrent event process through shape and size parameters. In contrast to the intensity function, which is the event occurrence rate conditional on the event history, the rate function is the occurrence rate unconditional on the event history, and thus it can be interpreted as a population-averaged count of events in unit time. In this paper, shape and size parameters are introduced and used to characterize the association between the rate function λ(⋅) and a random variable X. Measures of association between X and λ(⋅) are defined via shape- and size-based coefficients. Rate-independence of X and λ(⋅) is studied through tests of shape-independence and size-independence, where the shape- and size-based test statistics can be used separately or in combination. These tests can be applied when X is a covariable possibly correlated with the recurrent event process through λ(⋅) or, in the one-sample setting, when X is the censoring time at which the observation of N(⋅) is terminated. The proposed tests are shape- and size-based, so when a null hypothesis is rejected, the test results can serve to distinguish the source of violation.

Suggested Citation

  • Mei-Cheng Wang & Chiung-Yu Huang, 2014. "Statistical inference methods for recurrent event processes with shape and size parameters," Biometrika, Biometrika Trust, vol. 101(3), pages 553-566.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:553-566.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu016
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifei Sun & Chiung-Yu Huang & Mei-Cheng Wang, 2017. "Nonparametric Benefit–Risk Assessment Using Marker Process in the Presence of a Terminal Event," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 826-836, April.
    2. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    3. Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.
    4. Xin Chen & Jieli Ding & Liuquan Sun, 2018. "A semiparametric additive rate model for a modulated renewal process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 675-698, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:553-566.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.