IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i2p465-476..html
   My bibliography  Save this article

Bootstrap for the case-cohort design

Author

Listed:
  • Yijian Huang

Abstract

The case-cohort design facilitates economical investigation of risk factors in a large survival study, with covariate data collected only from the cases and a simple random subset of the full cohort. Methods that accommodate the design have been developed for various semiparametric models, but most inference procedures are based on asymptotic distribution theory. Such inference can be cumbersome to derive and implement, and does not permit confidence band construction. While the bootstrap is an obvious alternative, it is unclear how to resample because of complications from the two-stage sampling design. We establish an equivalent sampling scheme, and propose a novel and versatile nonparametric bootstrap for robust inference with an appealingly simple single-stage resampling. Theoretical justification and numerical assessment are provided for a number of procedures under the proportional hazards model.

Suggested Citation

  • Yijian Huang, 2014. "Bootstrap for the case-cohort design," Biometrika, Biometrika Trust, vol. 101(2), pages 465-476.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:2:p:465-476.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu004
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.
    2. J. E. Soh & Yijian Huang, 2021. "A varying-coefficient model for gap times between recurrent events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 437-459, July.
    3. Rebecca Payne & Ming Yang & Yingye Zheng & Majken K. Jensen & Tianxi Cai, 2016. "Robust risk prediction with biomarkers under two‐phase stratified cohort design," Biometrics, The International Biometric Society, vol. 72(4), pages 1037-1045, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:2:p:465-476.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.