IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i2p449-464..html
   My bibliography  Save this article

Testing equality of a large number of densities

Author

Listed:
  • D. Zhan
  • J. D. Hart

Abstract

The problem of testing equality of a large number of densities is considered. The classical k-sample problem compares a small, fixed number of distributions and allows the sample size from each distribution to increase without bound. In our asymptotic analysis the number of distributions tends to infinity but the size of individual samples remains fixed. The proposed test statistic is motivated by the simple idea of comparing kernel density estimators from the various samples to the average of all density estimators. However, a novel interpretation of this familiar type of statistic arises upon centring it. The asymptotic distribution of the statistic under the null hypothesis of equal densities is derived, and power against local alternatives is considered. It is shown that a consistent test is attainable in many situations where all but a vanishingly small proportion of densities are equal to each other. The test is studied via simulation, and an illustration involving microarray data is provided.

Suggested Citation

  • D. Zhan & J. D. Hart, 2014. "Testing equality of a large number of densities," Biometrika, Biometrika Trust, vol. 101(2), pages 449-464.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:2:p:449-464.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu002
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cousido-Rocha, Marta & de Uña-Álvarez, Jacobo & Hart, Jeffrey D., 2019. "A two-sample test for the equality of univariate marginal distributions for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    2. Marta Cousido-Rocha & Jacobo Uña-Álvarez & Jeffrey D. Hart, 2019. "Testing equality of a large number of densities under mixing conditions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1203-1228, December.
    3. Hart, Jeffrey D., 2016. "A nonparametric test of stationarity for independent data," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 40-44.
    4. M. D. Jiménez-Gamero & M. Cousido-Rocha & M. V. Alba-Fernández & F. Jiménez-Jiménez, 2022. "Testing the equality of a large number of populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 1-21, March.
    5. Jiménez-Gamero, M. Dolores & Franco-Pereira, Alba M., 2021. "Testing the equality of a large number of means of functional data," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    6. Alba-Fernández, M.V. & Jiménez-Gamero, M.D. & Jiménez-Jiménez, F., 2024. "Testing for proportions when data are classified into a large number of groups," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 588-600.
    7. Reza Modarres, 2020. "Graphical Comparison of High‐Dimensional Distributions," International Statistical Review, International Statistical Institute, vol. 88(3), pages 698-714, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:2:p:449-464.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.