IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i2p365-375..html
   My bibliography  Save this article

Locally ϕp-optimal designs for generalized linear models with a single-variable quadratic polynomial predictor

Author

Listed:
  • Hsin-Ping Wu
  • John Stufken

Abstract

Finding optimal designs for generalized linear models is a challenging problem. Recent research has identified the structure of optimal designs for generalized linear models with single or multiple unrelated explanatory variables that appear as first-order terms in the predictor. We consider generalized linear models with a single-variable quadratic polynomial as the predictor under a popular family of optimality criteria. When the design region is unrestricted, our results establish that optimal designs can be found within a subclass of designs based on a small support with symmetric structure. We show that the same conclusion holds with certain restrictions on the design region, but in other cases a larger subclass may have to be considered. In addition, we derive explicit expressions for some D-optimal designs.

Suggested Citation

  • Hsin-Ping Wu & John Stufken, 2014. "Locally ϕp-optimal designs for generalized linear models with a single-variable quadratic polynomial predictor," Biometrika, Biometrika Trust, vol. 101(2), pages 365-375.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:2:p:365-375.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ast071
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kao, Ming-Hung & Khogeer, Hazar, 2021. "Optimal designs for mixed continuous and binary responses with quantitative and qualitative factors," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    2. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:2:p:365-375.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.