IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i1p85-101..html
   My bibliography  Save this article

Graph estimation with joint additive models

Author

Listed:
  • Arend Voorman
  • Ali Shojaie
  • Daniela Witten

Abstract

In recent years, there has been considerable interest in estimating conditional independence graphs in high dimensions. Most previous work assumed that the variables are multivariate Gaussian or that the conditional means of the variables are linearly related. Unfortunately, if these assumptions are violated, the resulting conditional independence estimates can be inaccurate. We propose a semiparametric method, graph estimation with joint additive models, which allows the conditional means of the features to take an arbitrary additive form. We present an efficient algorithm for computation of our estimator, and prove that it is consistent. We extend our method to estimation of directed graphs with known causal ordering. Using simulated data, we show that our method performs better than existing methods when there are nonlinear relationships among the features, and is comparable to methods that assume multivariate normality when the conditional means are linear. We illustrate our method on a cell signalling dataset.

Suggested Citation

  • Arend Voorman & Ali Shojaie & Daniela Witten, 2014. "Graph estimation with joint additive models," Biometrika, Biometrika Trust, vol. 101(1), pages 85-101.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:1:p:85-101.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ast053
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nanshan, Muye & Zhang, Nan & Xun, Xiaolei & Cao, Jiguo, 2022. "Dynamical modeling for non-Gaussian data with high-dimensional sparse ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    2. Chun, Hyonho & Lee, Myung Hee & Fleet, James C. & Oh, Ji Hwan, 2016. "Graphical models via joint quantile regression with component selection," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 162-171.
    3. Guo, Shaojun & Qiao, Xinghao, 2023. "On consistency and sparsity for high-dimensional functional time series with application to autoregressions," LSE Research Online Documents on Economics 114638, London School of Economics and Political Science, LSE Library.
    4. Hao Mei & Ruofan Jia & Guanzhong Qiao & Zhenqiu Lin & Shuangge Ma, 2023. "Human disease clinical treatment network for the elderly: analysis of the medicare inpatient length of stay and readmission data," Biometrics, The International Biometric Society, vol. 79(1), pages 404-416, March.
    5. Hirose, Kei & Fujisawa, Hironori & Sese, Jun, 2017. "Robust sparse Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 172-190.
    6. Linh H. Nghiem & Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2022. "Estimation of graphical models for skew continuous data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1811-1841, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:1:p:85-101.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.