IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v100y2013i4p955-970.html
   My bibliography  Save this article

Smoothing splines with varying smoothing parameter

Author

Listed:
  • Xiao Wang
  • Pang Du
  • Jinglai Shen

Abstract

This paper considers the development of spatially adaptive smoothing splines for the estimation of a regression function with nonhomogeneous smoothness across the domain. Two challenging issues arising in this context are the evaluation of the equivalent kernel and the determination of a local penalty. The penalty is a function of the design points in order to accommodate local behaviour of the regression function. We show that the spatially adaptive smoothing spline estimator is approximately a kernel estimator, and that the equivalent kernel is spatially dependent. The equivalent kernels for traditional smoothing splines are a special case of this general solution. With the aid of the Green's function for a two-point boundary value problem, explicit forms of the asymptotic mean and variance are obtained for any interior point. Thus, the optimal roughness penalty function is obtained by approximately minimizing the asymptotic integrated mean squared error. Simulation results and an application illustrate the performance of the proposed estimator. Copyright 2013, Oxford University Press.

Suggested Citation

  • Xiao Wang & Pang Du & Jinglai Shen, 2013. "Smoothing splines with varying smoothing parameter," Biometrika, Biometrika Trust, vol. 100(4), pages 955-970.
  • Handle: RePEc:oup:biomet:v:100:y:2013:i:4:p:955-970
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ast031
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Čampulová, 2018. "Comparison of Methods for Smoothing Environmental Data with an Application to Particulate Matter PM10," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(2), pages 453-463.
    2. Yang, Lianqiang & Hong, Yongmiao, 2017. "Adaptive penalized splines for data smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 70-83.
    3. Tong, Xiaojun & He, Zhuoqiong Chong & Sun, Dongchu, 2018. "Estimating Chinese Treasury yield curves with Bayesian smoothing splines," Econometrics and Statistics, Elsevier, vol. 8(C), pages 94-124.
    4. Soumya D. Mohanty & Ethan Fahnestock, 2021. "Adaptive spline fitting with particle swarm optimization," Computational Statistics, Springer, vol. 36(1), pages 155-191, March.
    5. Fabio Centofanti & Antonio Lepore & Alessandra Menafoglio & Biagio Palumbo & Simone Vantini, 2023. "Adaptive smoothing spline estimator for the function-on-function linear regression model," Computational Statistics, Springer, vol. 38(1), pages 191-216, March.
    6. Kim, Daeju & Kawano, Shuichi & Ninomiya, Yoshiyuki, 2023. "Smoothly varying regularization," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:100:y:2013:i:4:p:955-970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.