IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v100y2013i4p939-954.html
   My bibliography  Save this article

Scaled envelopes: scale-invariant and efficient estimation in multivariate linear regression

Author

Listed:
  • R. Dennis Cook
  • Zhihua Su

Abstract

Efficient estimation of the regression coefficients is a fundamental problem in multivariate linear regression. The envelope model proposed by Cook et al. (2010) was shown to have the potential to achieve substantial efficiency gains by accounting for linear combinations of the response vector that are essentially immaterial to coefficient estimation. This requires in part that the distribution of those linear combinations be invariant to changes in the nonstochastic predictor vector. However, inference based on an envelope is not invariant or equivariant under rescaling of the responses, tending to limit application to responses that are measured in the same or similar units. The efficiency gains promised by envelopes often cannot be realized when the responses are measured in different scales. To overcome this limitation and broaden the scope of envelope methods, we propose a scaled version of the envelope model, which preserves the potential of the original envelope methods to increase efficiency and is invariant to scale changes. Likelihood-based estimators are derived and theoretical properties of the estimators are studied in various circumstances. It is shown that estimating appropriate scales for the responses can produce substantial efficiency gains when the original envelope model offers none. Simulations and an example are given to support the theoretical claims. Copyright 2013, Oxford University Press.

Suggested Citation

  • R. Dennis Cook & Zhihua Su, 2013. "Scaled envelopes: scale-invariant and efficient estimation in multivariate linear regression," Biometrika, Biometrika Trust, vol. 100(4), pages 939-954.
  • Handle: RePEc:oup:biomet:v:100:y:2013:i:4:p:939-954
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ast026
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.
    2. Li, Gen & Yang, Dan & Nobel, Andrew B. & Shen, Haipeng, 2016. "Supervised singular value decomposition and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 7-17.
    3. Dennis Cook, R. & Forzani, Liliana, 2023. "On the role of partial least squares in path analysis for the social sciences," Journal of Business Research, Elsevier, vol. 167(C).
    4. Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:100:y:2013:i:4:p:939-954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.