IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v100y2013i4p801-816.html
   My bibliography  Save this article

Nonparametric Bayes modelling of count processes

Author

Listed:
  • Antonio Canale
  • David B. Dunson

Abstract

Data on count processes arise in a variety of applications, including longitudinal, spatial and imaging studies measuring count responses. The literature on statistical models for dependent count data is dominated by models built from hierarchical Poisson components. The Poisson assumption is not warranted in many applied contexts, and hierarchical Poisson models make restrictive assumptions about overdispersion in marginal distributions. In this article we propose a class of nonparametric Bayes count process models, constructed through rounding real-valued underlying processes. The proposed class of models accommodates situations in which separate count-valued functional data are observed for each subject under study. Theoretical results on large support and posterior consistency are established, and computational algorithms are developed based on Markov chain Monte Carlo simulation. The methods are evaluated via simulation and illustrated by application to longitudinal tumour counts and to asthma inhaler usage. Copyright 2013, Oxford University Press.

Suggested Citation

  • Antonio Canale & David B. Dunson, 2013. "Nonparametric Bayes modelling of count processes," Biometrika, Biometrika Trust, vol. 100(4), pages 801-816.
  • Handle: RePEc:oup:biomet:v:100:y:2013:i:4:p:801-816
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ast037
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelly R. Moran & Elizabeth L. Turner & David Dunson & Amy H. Herring, 2021. "Bayesian hierarchical factor regression models to infer cause of death from verbal autopsy data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 532-557, June.
    2. Kelly R. Moran & Matthew W. Wheeler, 2022. "Fast increased fidelity samplers for approximate Bayesian Gaussian process regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1198-1228, September.
    3. Daniel R. Kowal & Bohan Wu, 2023. "Semiparametric count data regression for self‐reported mental health," Biometrics, The International Biometric Society, vol. 79(2), pages 1520-1533, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:100:y:2013:i:4:p:801-816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.