IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v100y2013i2p339-354.html
   My bibliography  Save this article

Estimating time-varying effects for overdispersed recurrent events data with treatment switching

Author

Listed:
  • Qingxia Chen
  • Donglin Zeng
  • Joseph G. Ibrahim
  • Mouna Akacha
  • Heinz Schmidli

Abstract

In the analysis of multivariate event times, frailty models assuming time-independent regression coefficients are often considered, mainly due to their mathematical convenience. In practice, regression coefficients are often time dependent and the temporal effects are of clinical interest. Motivated by a phase III clinical trial in multiple sclerosis, we develop a semiparametric frailty modelling approach to estimate time-varying effects for overdispersed recurrent events data with treatment switching. The proposed model incorporates the treatment switching time in the time-varying coefficients. Theoretical properties of the proposed model are established and an efficient expectation-maximization algorithm is derived to obtain the maximum likelihood estimates. Simulation studies evaluate the numerical performance of the proposed model under various temporal treatment effect curves. The ideas in this paper can also be used for time-varying coefficient frailty models without treatment switching as well as for alternative models when the proportional hazard assumption is violated. A multiple sclerosis dataset is analysed to illustrate our methodology. Copyright 2013, Oxford University Press.

Suggested Citation

  • Qingxia Chen & Donglin Zeng & Joseph G. Ibrahim & Mouna Akacha & Heinz Schmidli, 2013. "Estimating time-varying effects for overdispersed recurrent events data with treatment switching," Biometrika, Biometrika Trust, vol. 100(2), pages 339-354.
  • Handle: RePEc:oup:biomet:v:100:y:2013:i:2:p:339-354
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass091
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huazhen Lin & Zhe Fei & Yi Li, 2016. "A Semiparametrically Efficient Estimator of the Time-Varying Effects for Survival Data with Time-Dependent Treatment," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 649-663, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:100:y:2013:i:2:p:339-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.