IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v100y2013i1p173-187.html
   My bibliography  Save this article

Smoothed nonparametric estimation for current status competing risks data

Author

Listed:
  • Chenxi Li
  • Jason P. Fine

Abstract

We study the nonparametric estimation of the cumulative incidence function and the cause-specific hazard function for current status data with competing risks via kernel smoothing. A smoothed naive nonparametric maximum likelihood estimator and a smoothed full nonparametric maximum likelihood estimator are shown to have pointwise asymptotic normality and faster convergence rates than the corresponding unsmoothed nonparametric likelihood estimators. Using the smoothed estimators and the plug-in principle, we can estimate the cause-specific hazard function, which has not been studied previously. We also propose semi-smoothed estimators of the cause-specific hazard as an alternative to the smoothed estimator and demonstrate that neither is uniformly more efficient than the other. Numerical studies show that a smoothed bootstrap method works well for selecting the bandwidths in the smoothed nonparametric estimation. The use of the estimators is exemplified by an application to cumulative incidence and hazard of subtype-specific HIV infection from a sero-prevalence study in injecting drug users in Thailand. Copyright 2013, Oxford University Press.

Suggested Citation

  • Chenxi Li & Jason P. Fine, 2013. "Smoothed nonparametric estimation for current status competing risks data," Biometrika, Biometrika Trust, vol. 100(1), pages 173-187.
  • Handle: RePEc:oup:biomet:v:100:y:2013:i:1:p:173-187
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass053
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    2. Li, Chenxi, 2016. "The Fine–Gray model under interval censored competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 327-344.
    3. Li, Chenxi, 2016. "Cause-specific hazard regression for competing risks data under interval censoring and left truncation," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 197-208.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:100:y:2013:i:1:p:173-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.