Author
Listed:
- Maggie M Mayberry
- Katherine C Naumer
- Annaliese N Novinger
- Dalton M McCart
- Rachel V Wilkins
- Haley Muse
- Tia-Lynn Ashman
- Avery L Russell
Abstract
Cooperation and conflict are common in plant–pollinator interactions. Flowering plants often entice pollinators to visit by offering floral food rewards, thereby facilitating pollination. However, pollinators such as bees can learn to improve their collection of floral rewards (such as pollen), changing how they interact with the flower’s reproductive organs, which together could reduce pollination success. Consequently, complex flowers that slow pollinator learning might benefit the plant. Yet how pollinator learning and flower complexity interact to affect pollination success is unknown. We therefore asked how differences in complexity of 4 flower types (Phacelia campanularia, Exacum affine, Solanum elaeagnifolium, and Erythranthe guttata) affected learning by pollen-foraging generalist bumble bees (Bombus impatiens) and how learning affected pollen collection and pollen deposition on these flowers. We found that bees generally learned how to efficiently handle more complex flower types more slowly. Bees that required more visits to become efficient foragers collected less pollen, with no effect on pollen deposition. Except for the simplest flower type, learning also involved development of motor routines unique to each flower type. Experienced bees overall collected more pollen, but individual differences in motor routines did not affect pollen collection. Conversely, individual differences in motor routines affected pollen deposition, but there was no overall effect of experience. Thus, even though learning overall benefits the bee, it does not alter female (and potentially male) fitness benefits for the plant. We discuss potential reasons for these patterns and consequences for bee behavior and flower evolution.
Suggested Citation
Maggie M Mayberry & Katherine C Naumer & Annaliese N Novinger & Dalton M McCart & Rachel V Wilkins & Haley Muse & Tia-Lynn Ashman & Avery L Russell, 2024.
"Learning to handle flowers increases pollen collection for bees but does not affect pollination success for plants,"
Behavioral Ecology, International Society for Behavioral Ecology, vol. 35(6), pages 37-1170.
Handle:
RePEc:oup:beheco:v:35:y:2024:i:6:p:37-1170.
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:35:y:2024:i:6:p:37-1170.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.