IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v34y2023i4p682-694..html
   My bibliography  Save this article

Size-selective harvesting impacts learning and decision-making in zebrafish, Danio rerio

Author

Listed:
  • Tamal Roy
  • Tabea Rohr
  • Robert Arlinghaus

Abstract

Size-selective harvesting common to fisheries is known to evolutionarily alter life history and behavioral traits in exploited fish populations. Changes in these traits may, in turn, modify learning and decision-making abilities through energetic trade-offs with brain investment that can vary across development or via correlations with personality traits. We examined the hypothesis of size-selection induced alteration of learning performance in three selection lines of zebrafish (Danio rerio) generated through intensive harvesting for large, small and random body-size for five generations followed by no further selection for ten generations that allowed examining evolutionarily fixed outcomes. We tested associative learning ability throughout ontogeny in fish groups using a color-discrimination paradigm with a food reward, and the propensity to make group decisions in an associative task. All selection lines showed significant associative abilities that improved across ontogeny. The large-harvested line fish showed a significantly slower associative learning speed as subadults and adults than the controls. We found no evidence of memory decay as a function of size-selection. Decision-making speed did not vary across lines, but the large-harvested line made faster decisions during the probe trial. Collectively, our results show that large size-selective harvesting evolutionarily alters associative and decision-making abilities in zebrafish, which could affect resource acquisition and survival in exploited fish populations.

Suggested Citation

  • Tamal Roy & Tabea Rohr & Robert Arlinghaus, 2023. "Size-selective harvesting impacts learning and decision-making in zebrafish, Danio rerio," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(4), pages 682-694.
  • Handle: RePEc:oup:beheco:v:34:y:2023:i:4:p:682-694.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arad037
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:34:y:2023:i:4:p:682-694.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.