Author
Listed:
- Adam L Crane
- Maud C O Ferrari
- Ita A E Rivera-Hernández
- Grant E Brown
- Ulrika Candolin
Abstract
Habitat varies in structure, with animals often preferring a certain degree of microhabitat complexity that facilitates fitness-related activities such as predator avoidance. Environments with high predation risk can induce elevated baseline fear and neophobia in prey, but whether microhabitat complexity influences the acquisition of neophobia has yet to be reported. Here, we tested whether exposure to predation risk induces different levels of fear in microhabitats that differed in complexity. We exposed fathead minnows, Pimephales promelas, to predation risk repeatedly (12 times over 4 days) in the form of damage-released chemical alarm cues (compared to water control) in tanks with vertical plant structure distributed either throughout the tank (complex habitat) or clumped together (simple habitat). Then, we tested minnows before and after exposure to a novel odor in tanks with either the same microhabitat complexity (i.e., familiar habitats) or in tanks with novel habitat that had different substrate structure and no vertical structure. Minnows in the complex habitat showed less overall movement one day after the background risk period, whereas individuals in the simple habitat showed reduced movement regardless of prior risk exposure. We observed stronger effects in the novel habitat, where background risk in both simple and complex habitats caused neophobia. However, individuals from the simple background habitat showed higher baseline fear behaviors. Hence, for minnows, low microhabitat complexity appears to lead to elevated fear, which remains even after a habitat change. Lay Summary High-risk environments can induce a state of elevated baseline fear and neophobia in prey, but how microhabitat complexity influences the acquisition of neophobia has yet to be reported. We observed the behavior of minnows after manipulating vertical plant structure (simple or complex) and exposure to predation risk (present or absent) in the form of damage-released conspecific chemical cues. Low microhabitat complexity led to increased predation fear, which intensified upon moving to novel habitats.
Suggested Citation
Adam L Crane & Maud C O Ferrari & Ita A E Rivera-Hernández & Grant E Brown & Ulrika Candolin, 2020.
"Microhabitat complexity influences fear acquisition in fathead minnows,"
Behavioral Ecology, International Society for Behavioral Ecology, vol. 31(1), pages 261-266.
Handle:
RePEc:oup:beheco:v:31:y:2020:i:1:p:261-266.
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:31:y:2020:i:1:p:261-266.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.