IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v30y2019i6p1691-1699..html
   My bibliography  Save this article

Defensive posture in a terrestrial salamander deflects predatory strikes irrespective of body size

Author

Listed:
  • Alexander L Myette
  • Thomas J Hossie
  • Dennis L Murray
  • Marc Naguib

Abstract

A wide variety of prey use defensive postures as a means of protection from predators. Many salamanders engage in broadly similar defensive postures, which may function as a warning signal and reduce the probability of attack, or may deflect predator attacks away from vital body parts. The extent to which these strategies (i.e., aposematism and deflection) act exclusively or synergistically, however, remains unknown. We deployed clay salamanders in the field, manipulating size (small, large) and posture (resting, defensive), and documented attack rates across three predator types. Competing risks analysis revealed that attack rates were affected by model size, deployment period, and leaf litter depth at the site of deployment, whereas model posture had no significant effect. Model size and posture did not interact, indicating that defensive posture was ineffective in deterring attack irrespective of prey size. Model prey in the defensive posture received significantly more attacks on the tail irrespective of size, and the defensive posture was more effective at deflecting avian attacks compared to mammal predation. We conclude that defensive posture increases tail conspicuousness without increasing predation risk, and primarily functions to deflect attacks away from vital body parts. The efficacy of defection may be further increased by tail undulation, however our use of static models means that we cannot exclude aposematic or deimatic functions for such movements. Our results provide important support for the deflection hypothesis in explaining antipredator behavior, and thereby set the stage for additional research targeting the functionality of attack deflection in natural predator–prey encounters.

Suggested Citation

  • Alexander L Myette & Thomas J Hossie & Dennis L Murray & Marc Naguib, 2019. "Defensive posture in a terrestrial salamander deflects predatory strikes irrespective of body size," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(6), pages 1691-1699.
  • Handle: RePEc:oup:beheco:v:30:y:2019:i:6:p:1691-1699.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arz137
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:30:y:2019:i:6:p:1691-1699.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.