Author
Listed:
- Brock Geary
- Scott T Walter
- Paul L Leberg
- Jordan Karubian
Abstract
The degree to which foraging individuals are able to appropriately modify their behaviors in response to dynamic environmental conditions and associated resource availability can have important fitness consequences. Despite an increasingly refined understanding of differences in foraging behavior between individuals, we still lack detailed characterizations of within-individual variation over space and time, and what factors may drive this variability. From 2014 to 2017, we used GPS transmitters and accelerometers to document foraging movements by breeding adult Brown Pelicans (Pelecanus occidentalis) in the northern Gulf of Mexico, where the prey landscape is patchy and dynamic at various scales. Assessments of traditional foraging metrics such as trip distance, linearity, or duration did not yield significant relationships between individuals. However, we did observe lower site fidelity and less variation in energy expenditure in birds of higher body condition, despite a population-level trend of increased fidelity as the breeding season progressed. These findings suggest that high-quality individuals are both more variable and more efficient in their foraging behaviors during a period of high energetic demand, consistent with a “rich get richer” scenario in which individuals in better condition are able to invest in more costly behaviors that provide higher returns. This work highlights the importance of considering behavioral variation at multiple scales, with particular reference to within-individual variation, to improve our understanding of foraging ecology in wild populations. Within-individual variation in foraging behaviors is not well-understood, despite historical appreciation of between-individual differences. Spatially explicit assessment of foraging strategies in Brown Pelicans revealed no consistent between-individual differences, but considerable within-individual variation. Birds in better condition had lower site fidelity and less variable energy expenditure, suggesting more efficient foraging despite uncertainty associated with this strategy. This is consistent with a “rich get richer” scenario and highlights the importance of considering behavioral variation at multiple scales.
Suggested Citation
Brock Geary & Scott T Walter & Paul L Leberg & Jordan Karubian, 2019.
"Condition-dependent foraging strategies in a coastal seabird: evidence for the rich get richer hypothesis,"
Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(2), pages 356-363.
Handle:
RePEc:oup:beheco:v:30:y:2019:i:2:p:356-363.
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:30:y:2019:i:2:p:356-363.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.