IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v27y2016i2p462-469..html
   My bibliography  Save this article

Temperature can shape a cline in polyandry, but only genetic variation can sustain it over time

Author

Listed:
  • Michelle L. Taylor
  • Tom A.R. Price
  • Alison Skeats
  • Nina Wedell

Abstract

Multiple mating by females (polyandry) is a widespread behavior occurring in diverse taxa, species, and populations. Polyandry can also vary widely within species, and individual populations, so that both monandrous and polyandrous females occur together. Genetic differences can explain some of this intraspecific variation in polyandry, but environmental factors are also likely to play a role. One environmental factor that influences many fundamental biological processes is temperature. Higher temperatures have been shown to directly increase remating in laboratory studies of insects. In the longer term, high temperature could also help to drive the evolution of larger-scale patterns of behavior by changing the context-dependent balance of costs and benefits of polyandry across environments. We examined the relative influence of rearing and mating temperatures on female remating in populations of Drosophila pseudoobscura that show a latitudinal cline in polyandry in nature, using a range of ecologically relevant temperatures. We found that females of all genotypes remated more at cooler temperatures, which fits with the observation of higher average frequencies of polyandry at higher latitudes in this species. However, the impact of temperature was outweighed by the strong genetic control of remating in females in this species. It is likely that genetic factors provide the primary explanation for the latitudinal cline in polyandry in this species.

Suggested Citation

  • Michelle L. Taylor & Tom A.R. Price & Alison Skeats & Nina Wedell, 2016. "Temperature can shape a cline in polyandry, but only genetic variation can sustain it over time," Behavioral Ecology, International Society for Behavioral Ecology, vol. 27(2), pages 462-469.
  • Handle: RePEc:oup:beheco:v:27:y:2016:i:2:p:462-469.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arv172
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:27:y:2016:i:2:p:462-469.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.