IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v24y2013i3p659-667..html
   My bibliography  Save this article

Hidden Markov analysis describes dive patterns in semiaquatic animals

Author

Listed:
  • Joanna M. Bagniewska
  • Tom Hart
  • Lauren A. Harrington
  • David W. Macdonald

Abstract

Existing methods of dive analysis, developed for fully aquatic animals, tend to focus on frequency of behaviors rather than transitions between them. They, therefore, do not account for the variability of behavior of semiaquatic animals, and the switching between terrestrial and aquatic environments. This is the first study to use hidden Markov models (HMM) to divide dives of a semiaquatic animal into clusters and thus identify the environmental predictors of transition between behavioral modes. We used 18 existing data sets of the dives of 14 American mink (Neovison vison) fitted with time-depth recorders in lowland England. Using HMM, we identified 3 behavioral states (1, temporal cluster of dives; 2, more loosely aggregated diving within aquatic activity; and 3, terminal dive of a cluster or a single, isolated dive). Based on the higher than expected proportion of dives in State 1, we conclude that mink tend to dive in clusters. We found no relationship between temperature and the proportion of dives in each state or between temperature and the rate of transition between states, meaning that in our study area, mink are apparently not adopting different diving strategies at different temperatures. Transition analysis between states has shown that there is no correlation between ambient temperature and the likelihood of mink switching from one state to another, that is, changing foraging modes. The variables provided good discrimination and grouped into consistent states well, indicating promise for further application of HMM and other state transition analyses in studies of semiaquatic animals.

Suggested Citation

  • Joanna M. Bagniewska & Tom Hart & Lauren A. Harrington & David W. Macdonald, 2013. "Hidden Markov analysis describes dive patterns in semiaquatic animals," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(3), pages 659-667.
  • Handle: RePEc:oup:beheco:v:24:y:2013:i:3:p:659-667.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/ars217
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ann E. McKellar & Roland Langrock & Jeffrey R. Walters & Dylan C. Kesler, 2015. "Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 148-157.
    2. Brett T. McClintock, 2017. "Incorporating Telemetry Error into Hidden Markov Models of Animal Movement Using Multiple Imputation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 249-269, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:24:y:2013:i:3:p:659-667.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.