IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v18y2007i5p866-873.html
   My bibliography  Save this article

A spatial model of the evolution of quorum sensing regulating bacteriocin production

Author

Listed:
  • Tamás Czárán
  • Rolf F. Hoekstra

Abstract

Like any form of cooperative behavior, quorum sensing (QS) in bacteria is potentially vulnerable to cheating, the occurrence of individuals that contribute less but still profit from the benefits provided by others. In this paper, we explore the evolutionary stability of QS as a regulatory mechanism of antibiotics production in a spatially structured population, using cellular automaton (CA) modeling. QSg is supposed to regulate the excretion of a bacteriocin (anticompetitor toxin) in a population of bacteria polymorphic for the ability to produce and to be immune to the bacteriocin. Both the social interactions resulting from QS and the competitive interactions resulting from the bacteriocin excretion are supposed to be only effective at the local scale, that is, restricted to the immediately neighboring cells. This implies a rather diffuse kind of group selection. The CA model is contrasted to a model assuming no spatial structure but with otherwise identical assumptions. Our analysis predicts that QS as a regulatory mechanism of bacteriocin excretion is evolutionarily unstable when the competitive interactions between bacteriocin-producing, resistant, and sensitive strains only involve closely related strains which can share the signaling and responding genes involved in QS. However, when the competition is between unrelated strains and the QS alleles can only be carried by the bacteriocin-producing strains, stable QS may evolve provided its costs are small and the critical quorum threshold is neither too low nor too high. Copyright 2007, Oxford University Press.

Suggested Citation

  • Tamás Czárán & Rolf F. Hoekstra, 2007. "A spatial model of the evolution of quorum sensing regulating bacteriocin production," Behavioral Ecology, International Society for Behavioral Ecology, vol. 18(5), pages 866-873.
  • Handle: RePEc:oup:beheco:v:18:y:2007:i:5:p:866-873
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arm061
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Kopp & Kevin B Korb & Bruce I Mills, 2018. "Information-theoretic models of deception: Modelling cooperation and diffusion in populations exposed to "fake news"," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-35, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:18:y:2007:i:5:p:866-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.