IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v17y2006i3p336-344.html
   My bibliography  Save this article

Benefits of recruitment in honey bees: effects of ecology and colony size in an individual-based model

Author

Listed:
  • Anna Dornhaus
  • Franziska Klügl
  • Christoph Oechslein
  • Frank Puppe
  • Lars Chittka

Abstract

Why do some social insects have sophisticated recruitment systems, while other species do not communicate about food source locations at all? To answer this question, it is necessary to identify the social or ecological factors that make recruitment adaptive and thus likely to evolve. We developed an individual-based model of honey bee foraging to quantify the benefits of recruitment under different spatial distributions of nondepleting resource patches and with different colony sizes. Benefits of recruitment were strongly dependent on resource patch quality, density, and variability. Communication was especially beneficial if patches were poor, few, and variable. A sensitivity analysis of the model showed that under conditions of high resource density recruitment could even become detrimental, especially if foraging duration was short, tendency to scout was high, or recruits needed a long time to find communicated locations. Colony size, a factor often suspected to influence recruitment evolution, had no significant effect. These results may explain the recent experimental findings that in honey bees, benefits of waggle dance recruitment seem to vary seasonally and with habitat. They may also explain why some, but not other, species of social bees have evolved a strategy to communicate food locations to nest mates. Copyright 2006.

Suggested Citation

  • Anna Dornhaus & Franziska Klügl & Christoph Oechslein & Frank Puppe & Lars Chittka, 2006. "Benefits of recruitment in honey bees: effects of ecology and colony size in an individual-based model," Behavioral Ecology, International Society for Behavioral Ecology, vol. 17(3), pages 336-344, May.
  • Handle: RePEc:oup:beheco:v:17:y:2006:i:3:p:336-344
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arj036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dyer, A.G. & Dorin, A. & Reinhardt, V. & Garcia, J.E. & Rosa, M.G.P., 2014. "Bee reverse-learning behavior and intra-colony differences: Simulations based on behavioral experiments reveal benefits of diversity," Ecological Modelling, Elsevier, vol. 277(C), pages 119-131.
    2. Anna Dornhaus, 2011. "Finding optimal collective strategies using individual-based simulations: colony organization in social insects," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(1), pages 25-37, May.
    3. Tsvetomira Radeva & Anna Dornhaus & Nancy Lynch & Radhika Nagpal & Hsin-Hao Su, 2017. "Costs of task allocation with local feedback: Effects of colony size and extra workers in social insects and other multi-agent systems," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-29, December.
    4. Byron N. Van Nest & Darrell Moore, 2012. "Energetically optimal foraging strategy is emergent property of time-keeping behavior in honey bees," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(3), pages 649-658.
    5. Boris Granovskiy & Tanya Latty & Michael Duncan & David J. T. Sumpter & Madeleine Beekman, 2012. "How dancing honey bees keep track of changes: the role of inspector bees," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(3), pages 588-596.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:17:y:2006:i:3:p:336-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.