IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v14y2003i1p54-62.html
   My bibliography  Save this article

Live and let die: why fighter males of the ant Cardiocondyla kill each other but tolerate their winged rivals

Author

Listed:
  • Carl Anderson
  • Sylvia Cremer
  • Ju¨rgen Heinze

Abstract

Unlike most social insects, many Cardiocondyla ant species have two male morphs: wingless (ergatoid) males, who remain in the natal nest, and winged males who disperse but, strangely, before leaving may also mate within the nest. Whereas ergatoid males are highly intolerant of each other and fight among themselves, they tend to tolerate their winged counterparts. This is despite the fact that these winged males, like ergatoid males, represent mating competition. Why should ergatoid males tolerate their winged rivals? We developed a mathematical model to address this question. Our model focuses on a number of factors likely toinfluence whether ergatoid males are tolerant of winged males: ergatoid male--winged male relatedness, number of virgin queens, number of winged males, and the number of ejaculates a winged male has (winged males are sperm limited, whereas ergatoid males have lifelong spermatogenesis). Surprisingly, we found that increasing the number of virgin queens favors a kill strategy, whereas an increase in the other factors favors a let-live strategy; these predictions appear true for C. obscurior and for a number of other Cardiocondyla species. Two further aspects, unequal insemination success and multiple mating in queens, were also incorporated into the model and predictions made about their effects on toleration of winged males. The model is applicable more generally in species that have dimorphic males, such as some other ants, bees, and fig wasps. Copyright 2003.

Suggested Citation

  • Carl Anderson & Sylvia Cremer & Ju¨rgen Heinze, 2003. "Live and let die: why fighter males of the ant Cardiocondyla kill each other but tolerate their winged rivals," Behavioral Ecology, International Society for Behavioral Ecology, vol. 14(1), pages 54-62, January.
  • Handle: RePEc:oup:beheco:v:14:y:2003:i:1:p:54-62
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:14:y:2003:i:1:p:54-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.