IDEAS home Printed from https://ideas.repec.org/a/oup/ajagec/v99y2017i4p932-951..html
   My bibliography  Save this article

Knowledge Measurement and Productivity in a Research Program

Author

Listed:
  • Lin Qin
  • Steven T. Buccola

Abstract

We introduce a metric based on Bayesian probability theory to evaluate the determinants of scientific discovery, and use it to assess an international aquacultural research program consisting of a large number of highly varied projects. The metric accommodates not only project variety but a detailed breakdown of the sources of research productivity, accounting, for example, for the contributions of “failed” as well as “successful” investigations. A mean-absolute-deviation loss functional form permits decomposition of knowledge gain into an outcome probability shift (mean surprise) and outcome variance reduction (statistical precision), allowing productivity to be estimated for each of them separately, then combined into a single knowledge production relationship. Laboratory size is found to moderately boost mean surprise but has no effect on statistical precision, while investigator education greatly improves precision but has no effect on mean surprise. Returns to research scale are decreasing in the size dimension alone but increasing when size and education are taken together, suggesting the importance of measuring human capital at both the quantitative and qualitative margins.

Suggested Citation

  • Lin Qin & Steven T. Buccola, 2017. "Knowledge Measurement and Productivity in a Research Program," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(4), pages 932-951.
  • Handle: RePEc:oup:ajagec:v:99:y:2017:i:4:p:932-951.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ajae/aax028
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andersen, Matthew A., 2019. "Knowledge productivity and the returns to agricultural research: a review," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(2), April.

    More about this item

    Keywords

    Bayesian loss function; research productivity; research program evaluation; returns to scale; scientific knowledge; value of sample information;
    All these keywords.

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O39 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ajagec:v:99:y:2017:i:4:p:932-951.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.