IDEAS home Printed from https://ideas.repec.org/a/oup/ajagec/v72y1990i2p434-441..html
   My bibliography  Save this article

Theoretical and Empirical Advantages of Truncated Count Data Estimators for Analysis of Deer Hunting in California

Author

Listed:
  • Michael D. Creel
  • John B. Loomis

Abstract

Truncated Poisson and truncated negative binomial count data models, as well as standard count data models, OLS, nonlinear normal, and truncated nonlinear normal MLE were used to estimate demand for deer hunting in California. The truncated count data estimators and their properties are reviewed. A large sample (N = 2223) allowed random segmenting of the data into specification, estimation, and out-of-sample prediction portions. Statistics of interest are therefore unbiased by the specification search, and the prediction results allow comparison of the statistical models' robustness. The new estimators are found to be more appropriate for estimating and predicting demand and social benefits than the alternative estimators based on a variety of criteria.

Suggested Citation

  • Michael D. Creel & John B. Loomis, 1990. "Theoretical and Empirical Advantages of Truncated Count Data Estimators for Analysis of Deer Hunting in California," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(2), pages 434-441.
  • Handle: RePEc:oup:ajagec:v:72:y:1990:i:2:p:434-441.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2307/1242345
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ajagec:v:72:y:1990:i:2:p:434-441.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.