IDEAS home Printed from https://ideas.repec.org/a/ora/journl/v1y2015i1p839-845.html
   My bibliography  Save this article

Bankruptcy And The Altman Models. Case Of Albania

Author

Listed:
  • Numani Eni

    (Faculty of Economy, University of Tirana, Faculty of Economy, University of Tirana)

Abstract

This paper examines the univariate models for predicting bankruptcy and the multivariate models of the best known researcher in this field, the Altman models, models that use the multivariate discriminant analysis. This paper is mainly focused on the application of two of the Altman models (the revised model of 1983 and the revised model of 1993) to firms that operate in Albania, to see how its models can predict the future of Albanian firms. To assess the accuracy and the possibility of applying these models in the case of Albania, the study includes 80 firms (large firms) that operate in the service sector. To classify bankrupt and non-bankrupt firms, this study is based on the Albanian legislation on bankruptcy (Law no. 8901), according to which bankruptcy proceedings may be opened in case of a state of insolvency, when the firm is overburdened with debts or when the earnings after tax of the firm is negative for a period of 3 years. According to the Albanian legislation on bankruptcy, 24 (from 80) firms involved in the study result legally bankrupt. The first revised model (The 1983 model) of Altman predicts accurately these firms by 75%. Regarding the non-bankrupt firms (according to Albanian legislation on bankruptcy) inaccuracy in the forecast is even higher than in the case of bankrupt firms. From 56 non-bankrupt firms involved in the study, 23 are classified as insolvent company under the first revised model of Altman, while these firms are not bankrupt. In case of application of the second revised model of Altman (The 1993 model) the results are consistent with the results of the first model in terms of bankrupt firms. Meanwhile, what is striking is the significant reduction in the percentage of Type II error (from 41% to 23%).

Suggested Citation

  • Numani Eni, 2015. "Bankruptcy And The Altman Models. Case Of Albania," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 839-845, July.
  • Handle: RePEc:ora:journl:v:1:y:2015:i:1:p:839-845
    as

    Download full text from publisher

    File URL: http://anale.steconomiceuoradea.ro/volume/2015/n1/096.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles L. Merwin, 1942. "Financing Small Corporations in Five Manufacturing Industries, 1926–36," NBER Books, National Bureau of Economic Research, Inc, number merw42-1.
    2. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Altman, Edward I., 1984. "The success of business failure prediction models : An international survey," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 171-198, June.
    5. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    2. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    3. Magali Aubert & Geoffroy Enjolras, 2015. "Are short food supply chains a solution for farms facing financial difficulties?," Post-Print hal-02800273, HAL.
    4. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    5. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    6. Laitinen, Erkki K., 2007. "Classification accuracy and correlation: LDA in failure prediction," European Journal of Operational Research, Elsevier, vol. 183(1), pages 210-225, November.
    7. García-Gallego, Ana & Mures-Quintana, María-Jesús, 2013. "La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación || The Sample of Firms in Business Failure Prediction Models: Influence on Classification," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 133-150, June.
    8. Magali Aubert & Geoffroy Enjolras, 2014. "Le mode de commercialisation est-il une échappatoire pour les exploitations en difficulté financière ?," Post-Print hal-02740150, HAL.
    9. Michal Pavlicko & Jaroslav Mazanec, 2022. "Minimalistic Logit Model as an Effective Tool for Predicting the Risk of Financial Distress in the Visegrad Group," Mathematics, MDPI, vol. 10(8), pages 1-22, April.
    10. Gemünden, Hans Georg, 1988. "Defekte der empirischen Insolvenzforschung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 205, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Scalzer, Rodrigo S. & Rodrigues, Adriano & Macedo, Marcelo Álvaro da S. & Wanke, Peter, 2019. "Financial distress in electricity distributors from the perspective of Brazilian regulation," Energy Policy, Elsevier, vol. 125(C), pages 250-259.
    12. Becchetti, Leonardo & Castelli, Annalisa & Hasan, Iftekhar, 2008. "Investment-cash flow sensitivities, credit rationing and financing constraints," Research Discussion Papers 15/2008, Bank of Finland.
    13. Leonardo Becchetti & Annalisa Castelli & Iftekhar Hasan, 2010. "Investment–cash flow sensitivities, credit rationing and financing constraints in small and medium-sized firms," Small Business Economics, Springer, vol. 35(4), pages 467-497, November.
    14. Misund, Bård, 2015. "Financial Ratios and Prediction on Corporate Bankruptcy in the Atlantic Salmon Industry," UiS Working Papers in Economics and Finance 2015/9, University of Stavanger.
    15. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    16. du Jardin, Philippe & Séverin, Eric, 2010. "Dynamic analysis of the business failure process: A study of bankruptcy trajectories," MPRA Paper 44379, University Library of Munich, Germany.
    17. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    18. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    19. Becchetti, Leonardo & Castelli, Annalisa & Hasan, Iftekhar, 2008. "Investment-cash flow sensitivities, credit rationing and financing constraints," Bank of Finland Research Discussion Papers 15/2008, Bank of Finland.
    20. Michal Pavlicko & Marek Durica & Jaroslav Mazanec, 2021. "Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries," Mathematics, MDPI, vol. 9(16), pages 1-26, August.

    More about this item

    Keywords

    Altman model; bankrupt firms; non-bankrupt firms; type I error; type II error; Albanian legislation;
    All these keywords.

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • K22 - Law and Economics - - Regulation and Business Law - - - Business and Securities Law

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ora:journl:v:1:y:2015:i:1:p:839-845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catalin ZMOLE (email available below). General contact details of provider: https://edirc.repec.org/data/feoraro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.