IDEAS home Printed from https://ideas.repec.org/a/ora/journl/v1y2015i1p247-255.html
   My bibliography  Save this article

Accelerating The Adoption Process Of Renewable Energy Sources Among Smes

Author

Listed:
  • Mirjam Leloux

    (Wittenborg University, The Netherlands, Research Department)

  • Saskia Harkema

    (Wittenborg University, The Netherlands, Research Department)

  • Florentin Popescu

    (Bucharest University of Economic Studies, Bucharest, Department of International Business and Economics Romania)

Abstract

By 2020, intermittent renewable small scale energy sources (e.g. wind and solar energy) are expected to represent about 17% of the EU’s total electricity consumption. All national overriding energy policy objectives are to ensure competitive, secure and sustainable energy for the economy and for society. Renewable energy, allied with energy efficiency, is often found crucial to meet these goals of secure sustainable and competitive energy supplies reducing dependency on expensive fossil imports and underpinning the move towards a low carbon economy while delivering green jobs to the economy. This all contributes to national competitiveness and the jobs and economic growth agenda. However, a straight forward implementation of renewable energy options is not easy, due to various barriers and obstacles. For most SMEs, the concept of generating their own renewable energy is still more of academic than genuine interest. In general, several barriers are experienced, such as high capital investments, slow return on investment, and the lack of knowledge of the benefits. There is a need for education on the benefits and drawbacks of sustainable energy, as well as a greater contribution to costs for this to work. In this paper we describe the intermediate outcomes of a European Partnership under the name of GREAT (Growing Renewable Energy Applications and Technologies), funded under the INTERREG IVB NWE Programme. GREAT aims to encourage communities and small to medium size enterprises (SMEs) in Ireland, the United Kingdon, Belgium and The Netherlands to develop technological solutions for Smart Grid, Renewable Energy and Distributive Generation; research and develop policy issues for regulatory authorities and provide structured co-operation opportunities between SMEs and research institutes / technology developers. We developed GREAT spreadsheets to facilitate SMEs in each country to calculate the return-on-investment of renewable energy sources, such as solar panel installation, heat pumps and wind energy, generating electricity. We have a two-track approach: development of a tool to support SMEs in their decision making process about suitable and appropriate technologies and solutions, and research to understand the barriers and obstacles that hinder adoption and implementation of sustainable energy solutions. In this paper we introduce a tool which aims to support SMEs in their decision making process on renewable energy applications in the expectation that this will accelerate that process.

Suggested Citation

  • Mirjam Leloux & Saskia Harkema & Florentin Popescu, 2015. "Accelerating The Adoption Process Of Renewable Energy Sources Among Smes," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 247-255, July.
  • Handle: RePEc:ora:journl:v:1:y:2015:i:1:p:247-255
    as

    Download full text from publisher

    File URL: http://anale.steconomiceuoradea.ro/volume/2015/n1/026.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mario Ragwitz & Claus Huber & Gustav Resch, 2007. "Promotion of renewable energy sources: effects on innovation," International Journal of Public Policy, Inderscience Enterprises Ltd, vol. 2(1/2), pages 32-56.
    2. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, January.
    3. Pan, Haoran & Kohler, Jonathan, 2007. "Technological change in energy systems: Learning curves, logistic curves and input-output coefficients," Ecological Economics, Elsevier, vol. 63(4), pages 749-758, September.
    4. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    5. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    2. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    3. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq2cqb0 is not listed on IDEAS
    4. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    5. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
    6. Newbery, David M., 2016. "Towards a green energy economy? The EU Energy Union’s transition to a low-carbon zero subsidy electricity system – Lessons from the UK’s Electricity Market Reform," Applied Energy, Elsevier, vol. 179(C), pages 1321-1330.
    7. Leibowicz, Benjamin D., 2015. "Growth and competition in renewable energy industries: Insights from an integrated assessment model with strategic firms," Energy Economics, Elsevier, vol. 52(PA), pages 13-25.
    8. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
    9. Polzin, Friedemann & Sanders, Mark, 2020. "How to finance the transition to low-carbon energy in Europe?," Energy Policy, Elsevier, vol. 147(C).
    10. Tilmann Rave & Ursula Triebswetter & Johann Wackerbauer, 2013. "Koordination von Innovations-, Energie- und Umweltpolitik," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 61, September.
    11. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p4oq2cqb0 is not listed on IDEAS
    12. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
    13. Andreas Freytag & Leo Wangler, 2008. "Strategic Trade Policy als Response to Climate Change? The Political Economy of Climate Policy," Jena Economics Research Papers 2008-001, Friedrich-Schiller-University Jena.
    14. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    15. Berry, Stephen & Davidson, Kathryn, 2016. "Improving the economics of building energy code change: A review of the inputs and assumptions of economic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 157-166.
    16. George A. Gonzalez, 2016. "Transforming Energy: Solving Climate Change with Technology Policy . New York : Cambridge University Press . 360 pages. ISBN 9781107614970, $29.99 paperback. Anthony Patt , 2015 ," Review of Policy Research, Policy Studies Organization, vol. 33(1), pages 111-113, January.
    17. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Elofsson, Katarina & Gren, Ing-Marie, 2014. "Cost-efficient climate policies for interdependent and uncertain carbon pools," Working Paper Series 2014:7, Swedish University of Agricultural Sciences, Department Economics.
    19. Berry, Stephen & Davidson, Kathryn, 2015. "Zero energy homes – Are they economically viable?," Energy Policy, Elsevier, vol. 85(C), pages 12-21.
    20. repec:diw:diwwpp:dp1318 is not listed on IDEAS
    21. Stéphane Hallegatte, 2008. "A Proposal for a New Prescriptive Discounting Scheme: The Intergenerational Discount Rate," Working Papers 2008.47, Fondazione Eni Enrico Mattei.
    22. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    23. Strand, Jon, 2011. "Carbon offsets with endogenous environmental policy," Energy Economics, Elsevier, vol. 33(2), pages 371-378, March.

    More about this item

    Keywords

    Sustainable Energy Sources; Innovation; SMEs; Renewable Energy Applications; Economic tool for decision making;
    All these keywords.

    JEL classification:

    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ora:journl:v:1:y:2015:i:1:p:247-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catalin ZMOLE (email available below). General contact details of provider: https://edirc.repec.org/data/feoraro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.