IDEAS home Printed from https://ideas.repec.org/a/now/jnllfa/108.00000047.html
   My bibliography  Save this article

Machine Learning and Predicted Returns for Event Studies in Securities Litigation

Author

Listed:
  • Baker, Andrew
  • Gelbach, Jonah B.

Abstract

We investigate the use of machine learning (ML) and other robustestimation techniques in event studies conducted on single securities for the purpose of securities litigation. Single-firm event studies are widely used in civil litigation, with billions of dollars in settlements hinging on the outcome of the exercise. We find that regularization (equivalently, penalized estimation) can yield noticeable improvements in both the variance of event-date abnormal returns and significance-test power. Thus we believe that there is a role for ML methods in event studies used in securities litigation. At the same time, we find that ML-induced performance improvements are smaller than those based on other good practices. Most important are (i) the use of a peer index based on returns for firms in similar industries (how this is computed appears to be less important than that some version be included), and (ii) for significance testing, using the SQ test proposed in Gelbach et al. (2013), because it is robust to the considerable non-normality present in abnormal returns.

Suggested Citation

  • Baker, Andrew & Gelbach, Jonah B., 2020. "Machine Learning and Predicted Returns for Event Studies in Securities Litigation," Journal of Law, Finance, and Accounting, now publishers, vol. 5(2), pages 231-272, September.
  • Handle: RePEc:now:jnllfa:108.00000047
    DOI: 10.1561/108.00000047
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1561/108.00000047
    Download Restriction: no

    File URL: https://libkey.io/10.1561/108.00000047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacob Goldin & Julian Nyarko & Justin Young, 2022. "Forecasting Algorithms for Causal Inference with Panel Data," Papers 2208.03489, arXiv.org, revised Apr 2024.
    2. Semen Budennyy & Alexey Kazakov & Elizaveta Kovtun & Leonid Zhukov, 2022. "New drugs and stock market: how to predict pharma market reaction to clinical trial announcements," Papers 2208.07248, arXiv.org, revised Aug 2022.

    More about this item

    Keywords

    Event studies/market efficiency studies; financial econometrics; asset pricing;
    All these keywords.

    JEL classification:

    • K22 - Law and Economics - - Regulation and Business Law - - - Business and Securities Law
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:now:jnllfa:108.00000047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucy Wiseman (email available below). General contact details of provider: http://www.nowpublishers.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.