IDEAS home Printed from https://ideas.repec.org/a/nos/itrzhq/8.html
   My bibliography  Save this article

Development of binomial pricing model of shares and bonds for a life insurance company

Author

Listed:
  • Dyba Victoria

    (National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»)

  • Kapustian Volodymir

    (National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»)

Abstract

The process of share price formation is studied in the article as well as a random process, and a model is developed that describes a random process that has characteristics close to the Brownian bridge, and realizes a multiplicative model of the bond price evolution with outpaced repayment time and normal value. The definition of a random process of forming a share price through a geometric Brownian bridge is also given. Since the Ukrainian insurance market is at the initial stage of development, and the country's economy is unstable, insurance companies need practical and reliable tools for calculating and forecasting the expected return on investment activity. And especially urgent for this particular type of activity is the issue of breakeven investment, as insurance companies can’t afford risky investment because of the specifics of their activities. As a research result, the level of investing in a risk-free asset for an insurance company of a cumulative type is calculated.

Suggested Citation

  • Dyba Victoria & Kapustian Volodymir, 2017. "Development of binomial pricing model of shares and bonds for a life insurance company," Technology audit and production reserves, 5(37) 2017, Socionet;Technology audit and production reserves, vol. 5(4(37)), pages 45-51.
  • Handle: RePEc:nos:itrzhq:8
    as

    Download full text from publisher

    File URL: http://journals.uran.ua/tarp/article/view/113280
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    2. Thomas R. Berry-Stölzle & Gregory P. Nini & Sabine Wende, 2014. "External Financing in the Life Insurance Industry: Evidence From the Financial Crisis," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(3), pages 529-562, September.
    3. Schaper, Philipp, 2017. "Under pressure: how the business environment affects productivity and efficiency of European life insurance companiesAuthor-Name: Eling, Martin," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1082-1094.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    2. Eling, Martin & Jia, Ruo, 2019. "Efficiency and profitability in the global insurance industry," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    3. Omrani, Hashem & Emrouznejad, Ali & Shamsi, Meisam & Fahimi, Pegah, 2022. "Evaluation of insurance companies considering uncertainty: A multi-objective network data envelopment analysis model with negative data and undesirable outputs," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    4. Chen, Chang-Chih & Chang, Chia-Chien & Sun, Edward W. & Yu, Min-Teh, 2022. "Optimal decision of dynamic wealth allocation with life insurance for mitigating health risk under market incompleteness," European Journal of Operational Research, Elsevier, vol. 300(2), pages 727-742.
    5. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    6. Hadi Ghafoorian & NikIntan Norhan & Mohammed Ndaliman Abubakar & Fazel Mohammadi Nodeh, 2013. "Efficiency Considering Credit Risk in Banking Industry, Using Two-stage DEA," Journal of Social and Development Sciences, AMH International, vol. 4(8), pages 356-360.
    7. Hongwei Liu & Ronglu Yang & Zhixiang Zhou & Dacheng Huang, 2020. "Regional Green Eco-Efficiency in China: Considering Energy Saving, Pollution Treatment, and External Environmental Heterogeneity," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    8. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    9. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    10. Bao-Ngoc Tong & Cheng-Ping Cheng & Lien-Wen Liang & Yi-Jun Liu, 2023. "Using Network DEA to Explore the Effect of Mobile Payment on Taiwanese Bank Efficiency," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    11. Cherchye, Laurens & De Rock, Bram & Kerstens, Pieter Jan, 2018. "Production with storable and durable inputs: Nonparametric analysis of intertemporal efficiency," European Journal of Operational Research, Elsevier, vol. 270(2), pages 498-513.
    12. Hirofumi Fukuyama & William L. Weber, 2017. "Japanese Bank Productivity, 2007–2012: A Dynamic Network Approach," Pacific Economic Review, Wiley Blackwell, vol. 22(4), pages 649-676, October.
    13. Yang, Guo-liang & Fukuyama, Hirofumi & Chen, Kun, 2019. "Investigating the regional sustainable performance of the Chinese real estate industry: A slack-based DEA approach," Omega, Elsevier, vol. 84(C), pages 141-159.
    14. Worthington, Andrew C. & Zelenyuk, Valentin, 2018. "Data envelopment analysis, truncated regression and double-bootstrap for panel data with application to Chinese bankingAuthor-Name: Du, Kai," European Journal of Operational Research, Elsevier, vol. 265(2), pages 748-764.
    15. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    16. Huang, Tai-Hsin & Lin, Chung-I & Chen, Kuan-Chen, 2017. "Evaluating efficiencies of Chinese commercial banks in the context of stochastic multistage technologies," Pacific-Basin Finance Journal, Elsevier, vol. 41(C), pages 93-110.
    17. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    18. Chen, Xiaoqing & Liu, Xinwang & Zhu, Qingyuan, 2022. "Comparative analysis of total factor productivity in China's high-tech industries," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    19. Li, Feng & Zhu, Qingyuan & Chen, Zhi, 2019. "Allocating a fixed cost across the decision making units with two-stage network structures," Omega, Elsevier, vol. 83(C), pages 139-154.
    20. Guccio, Calogero & Martorana, Marco & Mazza, Isidoro & Pignataro, Giacomo & Rizzo, Ilde, 2020. "An assessment of the performance of Italian public historical archives: Preservation vs utilisation," Journal of Policy Modeling, Elsevier, vol. 42(6), pages 1270-1286.

    More about this item

    Keywords

    insurance market; life insurance; savings; Brownian bridge; random process; shares; bonds; binomial model;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nos:itrzhq:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алина Макаренко (email available below). General contact details of provider: http://socionet.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.