Author
Listed:
- Brendan S. Ito
(Cornell University)
- Yongjie Gao
(Cornell University)
- Brian Kardon
(Cornell University)
- Jesse H. Goldberg
(Cornell University)
Abstract
Accurate goal-directed behaviour requires the sense of touch to be integrated with information about body position and ongoing motion1,2. Behaviours such as chewing, swallowing and speech critically depend on precise tactile events on a rapidly moving tongue3, but neural circuits for dynamic touch-guided tongue control are unknown. Here, using high-speed videography, we examined three-dimensional lingual kinematics as mice drank from a water spout that unexpectedly changed position during licking, requiring re-aiming in response to subtle contact events on the left, centre or right surface of the tongue. Mice integrated information about both precise touch events and tongue position to re-aim ensuing licks. Touch-guided re-aiming was unaffected by photoinactivation of tongue sensory, premotor and motor cortices, but was impaired by photoinactivation of the lateral superior colliculus (latSC). Electrophysiological recordings identified latSC neurons with mechanosensory receptive fields for precise touch events that were anchored in tongue-centred, head-centred or conjunctive reference frames. Notably, latSC neurons also encoded tongue position before contact, information that is important for tongue-to-head-based coordinate transformations underlying accurate touch-guided aiming. Viral tracing revealed tongue sensory inputs to the latSC from the lingual trigeminal nucleus, and optical microstimulation in the latSC revealed a topographic map for aiming licks. These findings demonstrate that touch-guided tongue control relies on a collicular mechanosensorimotor map, analogous to collicular visuomotor maps associated with visually guided orienting across many species.
Suggested Citation
Brendan S. Ito & Yongjie Gao & Brian Kardon & Jesse H. Goldberg, 2025.
"A collicular map for touch-guided tongue control,"
Nature, Nature, vol. 637(8048), pages 1143-1151, January.
Handle:
RePEc:nat:nature:v:637:y:2025:i:8048:d:10.1038_s41586-024-08339-3
DOI: 10.1038/s41586-024-08339-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:637:y:2025:i:8048:d:10.1038_s41586-024-08339-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.