Author
Listed:
- Peng-Lai Wang
(University of Manchester
East China Normal University)
- Stefan Borsley
(University of Manchester)
- Martin J. Power
(University of Manchester)
- Alessandro Cavasso
(Université de Strasbourg and Institut Charles Sadron)
- Nicolas Giuseppone
(Université de Strasbourg and Institut Charles Sadron
Institut Universitaire de France (IUF))
- David A. Leigh
(University of Manchester
East China Normal University)
Abstract
Cells display a range of mechanical activities generated by motor proteins powered through catalysis1. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst2–7. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force8 in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven9 molecular motors. Continuous 360° rotation of the rotor about the stator of the catalysis-driven motor-molecules incorporated in the polymeric framework of the gel twists the polymer chains of the cross-linked network around one another. This progressively increases writhe and tightens entanglements, causing a macroscopic contraction of the gel to approximately 70% of its original volume. The subsequent addition of the opposite enantiomer fuelling system powers the rotation of the motor-molecules in the reverse direction, unwinding the entanglements and causing the gel to re-expand. Continued powered twisting of the strands in the new direction causes the gel to re-contract. In addition to actuation, motor-molecule rotation in the gel produces other chemical and physical outcomes, including changes in the Young modulus and storage modulus—the latter is proportional to the increase in strand crossings resulting from motor rotation. The experimental demonstration of work against a load by a synthetic organocatalyst, and its mechanism of energy transduction6, informs both the debate3,5,7 surrounding the mechanism of force generation by biological motors and the design principles6,10–14 for artificial molecular nanotechnology.
Suggested Citation
Peng-Lai Wang & Stefan Borsley & Martin J. Power & Alessandro Cavasso & Nicolas Giuseppone & David A. Leigh, 2025.
"Transducing chemical energy through catalysis by an artificial molecular motor,"
Nature, Nature, vol. 637(8046), pages 594-600, January.
Handle:
RePEc:nat:nature:v:637:y:2025:i:8046:d:10.1038_s41586-024-08288-x
DOI: 10.1038/s41586-024-08288-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:637:y:2025:i:8046:d:10.1038_s41586-024-08288-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.