Author
Listed:
- Ben Riddell-Young
(Oregon State University
University of Colorado)
- James Edward Lee
(Los Alamos National Laboratory)
- Edward J. Brook
(Oregon State University)
- Jochen Schmitt
(University of Bern)
- Hubertus Fischer
(University of Bern)
- Thomas K. Bauska
(British Antarctic Survey)
- James A. Menking
(Commonwealth Scientific and Industrial Research Organization (CSIRO))
- René Iseli
(University of Fribourg)
- Justin Reid Clark
(University of Colorado)
Abstract
Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard–Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3–5. Here we present multi-decadal-scale measurements of δ13C–CH4 and δD–CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C–CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C–CH4 enrichments synchronous with DO CH4 increases. δD–CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C–CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90–150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.
Suggested Citation
Ben Riddell-Young & James Edward Lee & Edward J. Brook & Jochen Schmitt & Hubertus Fischer & Thomas K. Bauska & James A. Menking & René Iseli & Justin Reid Clark, 2025.
"Abrupt changes in biomass burning during the last glacial period,"
Nature, Nature, vol. 637(8044), pages 91-96, January.
Handle:
RePEc:nat:nature:v:637:y:2025:i:8044:d:10.1038_s41586-024-08363-3
DOI: 10.1038/s41586-024-08363-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:637:y:2025:i:8044:d:10.1038_s41586-024-08363-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.