Author
Listed:
- Lorenz A. Fenk
(Max Planck Institute for Brain Research
Max Planck Institute for Biological Intelligence)
- Juan Luis Riquelme
(Max Planck Institute for Brain Research)
- Gilles Laurent
(Max Planck Institute for Brain Research)
Abstract
The mechanisms underlying the mammalian ultradian sleep rhythm—the alternation of rapid-eye-movement (REM) and slow-wave (SW) states—are not well understood but probably depend, at least in part, on circuits in the brainstem1–6. Here, we use perturbation experiments to probe this ultradian rhythm in sleeping lizards (Pogona vitticeps)7–9 and test the hypothesis that it originates in a central pattern generator10,11—circuits that are typically susceptible to phase-dependent reset and entrainment by external stimuli12. Using light pulses, we find that Pogona’s ultradian rhythm8 can be reset in a phase-dependent manner, with a critical transition from phase delay to phase advance in the middle of SW. The ultradian rhythm frequency can be decreased or increased, within limits, by entrainment with light pulses. During entrainment, Pogona REM (REMP) can be shortened but not lengthened, whereas SW can be dilated more flexibly. In awake animals, a few alternating light/dark epochs matching natural REMP and SW durations entrain a sleep-like brain rhythm, suggesting the transient activation of an ultradian rhythm generator. In sleeping animals, a light pulse delivered to a single eye causes an immediate ultradian rhythm reset, but only of the contralateral hemisphere; both sides resynchronize spontaneously, indicating that sleep is controlled by paired rhythm-generating circuits linked by functional excitation. Our results indicate that central pattern generators of a type usually known to control motor rhythms may also organize the ultradian sleep rhythm in a vertebrate.
Suggested Citation
Lorenz A. Fenk & Juan Luis Riquelme & Gilles Laurent, 2024.
"Central pattern generator control of a vertebrate ultradian sleep rhythm,"
Nature, Nature, vol. 636(8043), pages 681-689, December.
Handle:
RePEc:nat:nature:v:636:y:2024:i:8043:d:10.1038_s41586-024-08162-w
DOI: 10.1038/s41586-024-08162-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:636:y:2024:i:8043:d:10.1038_s41586-024-08162-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.