Author
Listed:
- Matthew F. Panichello
(Stanford University)
- Donatas Jonikaitis
(Stanford University)
- Yu Jin Oh
(Stanford University)
- Shude Zhu
(Stanford University)
- Ethan B. Trepka
(Stanford University)
- Tirin Moore
(Stanford University)
Abstract
Persistent, memorandum-specific neuronal spiking activity has long been hypothesized to underlie working memory1,2. However, emerging evidence suggests a potential role for ‘activity-silent’ synaptic mechanisms3–5. This issue remains controversial because evidence for either view has largely relied either on datasets that fail to capture single-trial population dynamics or on indirect measures of neuronal spiking. We addressed this controversy by examining the dynamics of mnemonic information on single trials obtained from large, local populations of lateral prefrontal neurons recorded simultaneously in monkeys performing a working memory task. Here we show that mnemonic information does not persist in the spiking activity of neuronal populations during memory delays, but instead alternates between coordinated ‘On’ and ‘Off’ states. At the level of single neurons, Off states are driven by both a loss of selectivity for memoranda and a return of firing rates to spontaneous levels. Further exploiting the large-scale recordings used here, we show that mnemonic information is available in the patterns of functional connections among neuronal ensembles during Off states. Our results suggest that intermittent periods of memorandum-specific spiking coexist with synaptic mechanisms to support working memory.
Suggested Citation
Matthew F. Panichello & Donatas Jonikaitis & Yu Jin Oh & Shude Zhu & Ethan B. Trepka & Tirin Moore, 2024.
"Intermittent rate coding and cue-specific ensembles support working memory,"
Nature, Nature, vol. 636(8042), pages 422-429, December.
Handle:
RePEc:nat:nature:v:636:y:2024:i:8042:d:10.1038_s41586-024-08139-9
DOI: 10.1038/s41586-024-08139-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:636:y:2024:i:8042:d:10.1038_s41586-024-08139-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.