IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v634y2024i8034d10.1038_s41586-024-07995-9.html
   My bibliography  Save this article

Ultra-high-energy gamma-ray bubble around microquasar V4641 Sgr

Author

Listed:
  • R. Alfaro

    (Universidad Nacional Autónoma de México)

  • C. Alvarez

    (Universidad Autónoma de Chiapas)

  • J. C. Arteaga-Velázquez

    (Universidad Michoacana de San Nicolás de Hidalgo)

  • D. Avila Rojas

    (Universidad Nacional Autónoma de México)

  • H. A. Ayala Solares

    (Pennsylvania State University)

  • R. Babu

    (Michigan Technological University)

  • E. Belmont-Moreno

    (Universidad Nacional Autónoma de México)

  • K. S. Caballero-Mora

    (Universidad Autónoma de Chiapas)

  • T. Capistrán

    (Universidad Nacional Autónoma de México)

  • A. Carramiñana

    (Instituto Nacional de Astrofísica, Óptica y Electrónica)

  • S. Casanova

    (Institute of Nuclear Physics Polish Academy of Sciences)

  • U. Cotti

    (Universidad Michoacana de San Nicolás de Hidalgo)

  • J. Cotzomi

    (Benemérita Universidad Autónoma de Puebla)

  • S. Coutiño de León

    (University of Wisconsin–Madison)

  • E. Fuente

    (Universidad de Guadalajara)

  • D. Depaoli

    (Max Planck Institute for Nuclear Physics)

  • N. Lalla

    (Stanford University)

  • R. Diaz Hernandez

    (Instituto Nacional de Astrofísica, Óptica y Electrónica)

  • B. L. Dingus

    (Los Alamos National Laboratory)

  • M. A. DuVernois

    (University of Wisconsin–Madison)

  • M. Durocher

    (Los Alamos National Laboratory)

  • J. C. Díaz-Vélez

    (University of Wisconsin–Madison)

  • K. Engel

    (University of Maryland)

  • C. Espinoza

    (Universidad Nacional Autónoma de México)

  • K. L. Fan

    (University of Maryland)

  • K. Fang

    (University of Wisconsin–Madison)

  • N. Fraija

    (Universidad Nacional Autónoma de México)

  • S. Fraija

    (Universidad Nacional Autónoma de México)

  • J. A. García-González

    (Escuela de Ingeniería y Ciencias)

  • F. Garfias

    (Universidad Nacional Autónoma de México)

  • A. Gonzalez Muñoz

    (Universidad Nacional Autónoma de México)

  • M. M. González

    (Universidad Nacional Autónoma de México)

  • J. A. Goodman

    (University of Maryland)

  • S. Groetsch

    (Michigan Technological University)

  • J. P. Harding

    (Los Alamos National Laboratory)

  • I. Herzog

    (Michigan State University)

  • J. Hinton

    (Max Planck Institute for Nuclear Physics)

  • D. Huang

    (University of Maryland)

  • F. Hueyotl-Zahuantitla

    (Universidad Autónoma de Chiapas)

  • P. Hüntemeyer

    (Michigan Technological University)

  • A. Iriarte

    (Universidad Nacional Autónoma de México)

  • V. Joshi

    (Friedrich-Alexander-Universität Erlangen-Nürnberg)

  • S. Kaufmann

    (Universidad Politecnica de Pachuca)

  • D. Kieda

    (University of Utah)

  • C. León

    (Universidad Michoacana de San Nicolás de Hidalgo)

  • J. Lee

    (University of Seoul)

  • H. León Vargas

    (Universidad Nacional Autónoma de México)

  • J. T. Linnemann

    (Michigan State University)

  • A. L. Longinotti

    (Universidad Nacional Autónoma de México)

  • G. Luis-Raya

    (Universidad Politecnica de Pachuca)

  • K. Malone

    (Los Alamos National Laboratory)

  • O. Martinez

    (Benemérita Universidad Autónoma de Puebla)

  • J. Martínez-Castro

    (Instituto Politécnico Nacional)

  • J. A. Matthews

    (University of New Mexico)

  • P. Miranda-Romagnoli

    (Universidad Autónoma del Estado de Hidalgo)

  • J. A. Morales-Soto

    (Universidad Michoacana de San Nicolás de Hidalgo)

  • E. Moreno

    (Benemérita Universidad Autónoma de Puebla)

  • M. Mostafá

    (Temple University)

  • A. Nayerhoda

    (Institute of Nuclear Physics Polish Academy of Sciences)

  • L. Nellen

    (Universidad Nacional Autónoma de Mexico)

  • M. Newbold

    (University of Utah)

  • M. U. Nisa

    (Michigan State University)

  • R. Noriega-Papaqui

    (Universidad Autónoma del Estado de Hidalgo)

  • L. Olivera-Nieto

    (Max Planck Institute for Nuclear Physics)

  • N. Omodei

    (Stanford University)

  • M. Osorio

    (Universidad Nacional Autónoma de México)

  • Y. Pérez Araujo

    (Universidad Nacional Autónoma de México)

  • E. G. Pérez-Pérez

    (Universidad Politecnica de Pachuca)

  • C. D. Rho

    (Sungkyunkwan University)

  • D. Rosa-González

    (Instituto Nacional de Astrofísica, Óptica y Electrónica)

  • E. Ruiz-Velasco

    (Max Planck Institute for Nuclear Physics)

  • H. Salazar

    (Benemérita Universidad Autónoma de Puebla)

  • D. Salazar-Gallegos

    (Michigan State University)

  • A. Sandoval

    (Universidad Nacional Autónoma de México)

  • M. Schneider

    (University of Maryland)

  • J. Serna-Franco

    (Universidad Nacional Autónoma de México)

  • A. J. Smith

    (University of Maryland)

  • Y. Son

    (University of Seoul)

  • R. W. Springer

    (University of Utah)

  • O. Tibolla

    (Universidad Politecnica de Pachuca)

  • K. Tollefson

    (Michigan State University)

  • I. Torres

    (Instituto Nacional de Astrofísica, Óptica y Electrónica)

  • R. Torres-Escobedo

    (Shanghai Jiao Tong University)

  • R. Turner

    (Michigan Technological University)

  • F. Ureña-Mena

    (Instituto Nacional de Astrofísica, Óptica y Electrónica)

  • E. Varela

    (Benemérita Universidad Autónoma de Puebla)

  • L. Villaseñor

    (Benemérita Universidad Autónoma de Puebla)

  • X. Wang

    (Michigan Technological University)

  • I. J. Watson

    (University of Seoul)

  • E. Willox

    (University of Maryland)

  • S. Yun-Cárcamo

    (University of Maryland)

  • H. Zhou

    (Shanghai Jiao Tong University)

Abstract

Microquasars are laboratories for the study of jets of relativistic particles produced by accretion onto a spinning black hole. Microquasars are near enough to allow detailed imaging of spatial features across the multiwavelength spectrum. The recent extension measurement of the spatial morphology of a microquasar, SS 433, to TeV gamma rays1 localizes the acceleration of electrons at shocks in the jet far from the black hole2. V4641 Sagittarii (V4641 Sgr) is a similar binary system with a black hole and B-type main-sequence companion star and has an orbit period of 2.8 days (refs. 3,4). It stands out for its super-Eddington accretion5 and for its radio jet, which is one of the fastest superluminal jets in the Milky Way. Previous observations of V4641 Sgr did not report gamma-ray emission6. Here we report TeV gamma-ray emission from V4641 Sgr that reveals particle acceleration at similar distances from the black hole as SS 433. Furthermore, the gamma-ray spectrum of V4641 Sgr is among the hardest TeV spectra observed from any known gamma-ray source and is detected above 200 TeV. Gamma rays are produced by particles, either electrons or protons, of higher energies. Because energetic electrons lose energy more quickly the higher their energy, such a spectrum either very strongly constrains the electron-production mechanism or points to the acceleration of high-energy protons. This suggests that large-scale jets from microquasars could be more common than previously expected and that they could be a notable source of galactic cosmic rays7–9.

Suggested Citation

  • R. Alfaro & C. Alvarez & J. C. Arteaga-Velázquez & D. Avila Rojas & H. A. Ayala Solares & R. Babu & E. Belmont-Moreno & K. S. Caballero-Mora & T. Capistrán & A. Carramiñana & S. Casanova & U. Cotti & , 2024. "Ultra-high-energy gamma-ray bubble around microquasar V4641 Sgr," Nature, Nature, vol. 634(8034), pages 557-560, October.
  • Handle: RePEc:nat:nature:v:634:y:2024:i:8034:d:10.1038_s41586-024-07995-9
    DOI: 10.1038/s41586-024-07995-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-024-07995-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-024-07995-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:634:y:2024:i:8034:d:10.1038_s41586-024-07995-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.