IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v634y2024i8033d10.1038_s41586-024-07998-6.html
   My bibliography  Save this article

Phase transitions in random circuit sampling

Author

Listed:
  • A. Morvan

    (Google Research)

  • B. Villalonga

    (Google Research)

  • X. Mi

    (Google Research)

  • S. Mandrà

    (Google Research
    NASA Ames Research Center
    KBR)

  • A. Bengtsson

    (Google Research)

  • P. V. Klimov

    (Google Research)

  • Z. Chen

    (Google Research)

  • S. Hong

    (Google Research)

  • C. Erickson

    (Google Research)

  • I. K. Drozdov

    (Google Research
    University of Connecticut)

  • J. Chau

    (Google Research)

  • G. Laun

    (Google Research)

  • R. Movassagh

    (Google Research)

  • A. Asfaw

    (Google Research)

  • L. T. A. N. Brandão

    (Strativia, Foreign Guest Researcher (Contractor) at National Institute of Standards and Technology (NIST))

  • R. Peralta

    (National Institute of Standards and Technology (NIST))

  • D. Abanin

    (Google Research)

  • R. Acharya

    (Google Research)

  • R. Allen

    (Google Research)

  • T. I. Andersen

    (Google Research)

  • K. Anderson

    (Google Research)

  • M. Ansmann

    (Google Research)

  • F. Arute

    (Google Research)

  • K. Arya

    (Google Research)

  • J. Atalaya

    (Google Research)

  • J. C. Bardin

    (Google Research
    University of Massachusetts)

  • A. Bilmes

    (Google Research)

  • G. Bortoli

    (Google Research)

  • A. Bourassa

    (Google Research)

  • J. Bovaird

    (Google Research)

  • L. Brill

    (Google Research)

  • M. Broughton

    (Google Research)

  • B. B. Buckley

    (Google Research)

  • D. A. Buell

    (Google Research)

  • T. Burger

    (Google Research)

  • B. Burkett

    (Google Research)

  • N. Bushnell

    (Google Research)

  • J. Campero

    (Google Research)

  • H.-S. Chang

    (Google Research)

  • B. Chiaro

    (Google Research)

  • D. Chik

    (Google Research)

  • C. Chou

    (Google Research)

  • J. Cogan

    (Google Research)

  • R. Collins

    (Google Research)

  • P. Conner

    (Google Research)

  • W. Courtney

    (Google Research)

  • A. L. Crook

    (Google Research)

  • B. Curtin

    (Google Research)

  • D. M. Debroy

    (Google Research)

  • A. Del Toro Barba

    (Google Research)

  • S. Demura

    (Google Research)

  • A. Di Paolo

    (Google Research)

  • A. Dunsworth

    (Google Research)

  • L. Faoro

    (Google Research)

  • E. Farhi

    (Google Research)

  • R. Fatemi

    (Google Research)

  • V. S. Ferreira

    (Google Research)

  • L. Flores Burgos

    (Google Research)

  • E. Forati

    (Google Research)

  • A. G. Fowler

    (Google Research)

  • B. Foxen

    (Google Research)

  • G. Garcia

    (Google Research)

  • É. Genois

    (Google Research)

  • W. Giang

    (Google Research)

  • C. Gidney

    (Google Research)

  • D. Gilboa

    (Google Research)

  • M. Giustina

    (Google Research)

  • R. Gosula

    (Google Research)

  • A. Grajales Dau

    (Google Research)

  • J. A. Gross

    (Google Research)

  • S. Habegger

    (Google Research)

  • M. C. Hamilton

    (Google Research
    Auburn University)

  • M. Hansen

    (Google Research)

  • M. P. Harrigan

    (Google Research)

  • S. D. Harrington

    (Google Research)

  • P. Heu

    (Google Research)

  • M. R. Hoffmann

    (Google Research)

  • T. Huang

    (Google Research)

  • A. Huff

    (Google Research)

  • W. J. Huggins

    (Google Research)

  • L. B. Ioffe

    (Google Research)

  • S. V. Isakov

    (Google Research)

  • J. Iveland

    (Google Research)

  • E. Jeffrey

    (Google Research)

  • Z. Jiang

    (Google Research)

  • C. Jones

    (Google Research)

  • P. Juhas

    (Google Research)

  • D. Kafri

    (Google Research)

  • T. Khattar

    (Google Research)

  • M. Khezri

    (Google Research)

  • M. Kieferová

    (Google Research
    University of Technology Sydney)

  • S. Kim

    (Google Research)

  • A. Kitaev

    (Google Research)

  • A. R. Klots

    (Google Research)

  • A. N. Korotkov

    (Google Research
    University of California)

  • F. Kostritsa

    (Google Research)

  • J. M. Kreikebaum

    (Google Research)

  • D. Landhuis

    (Google Research)

  • P. Laptev

    (Google Research)

  • K.-M. Lau

    (Google Research)

  • L. Laws

    (Google Research)

  • J. Lee

    (Google Research
    Harvard University)

  • K. W. Lee

    (Google Research)

  • Y. D. Lensky

    (Google Research)

  • B. J. Lester

    (Google Research)

  • A. T. Lill

    (Google Research)

  • W. Liu

    (Google Research)

  • W. P. Livingston

    (Google Research)

  • A. Locharla

    (Google Research)

  • F. D. Malone

    (Google Research)

  • O. Martin

    (Google Research)

  • S. Martin

    (Google Research)

  • J. R. McClean

    (Google Research)

  • M. McEwen

    (Google Research)

  • K. C. Miao

    (Google Research)

  • A. Mieszala

    (Google Research)

  • S. Montazeri

    (Google Research)

  • W. Mruczkiewicz

    (Google Research)

  • O. Naaman

    (Google Research)

  • M. Neeley

    (Google Research)

  • C. Neill

    (Google Research)

  • A. Nersisyan

    (Google Research)

  • M. Newman

    (Google Research)

  • J. H. Ng

    (Google Research)

  • A. Nguyen

    (Google Research)

  • M. Nguyen

    (Google Research)

  • M. Yuezhen Niu

    (Google Research)

  • T. E. O’Brien

    (Google Research)

  • S. Omonije

    (Google Research)

  • A. Opremcak

    (Google Research)

  • A. Petukhov

    (Google Research)

  • R. Potter

    (Google Research)

  • L. P. Pryadko

    (University of California)

  • C. Quintana

    (Google Research)

  • D. M. Rhodes

    (Google Research)

  • C. Rocque

    (Google Research)

  • E. Rosenberg

    (Google Research)

  • N. C. Rubin

    (Google Research)

  • N. Saei

    (Google Research)

  • D. Sank

    (Google Research)

  • K. Sankaragomathi

    (Google Research)

  • K. J. Satzinger

    (Google Research)

  • H. F. Schurkus

    (Google Research)

  • C. Schuster

    (Google Research)

  • M. J. Shearn

    (Google Research)

  • A. Shorter

    (Google Research)

  • N. Shutty

    (Google Research)

  • V. Shvarts

    (Google Research)

  • V. Sivak

    (Google Research)

  • J. Skruzny

    (Google Research)

  • W. C. Smith

    (Google Research)

  • R. D. Somma

    (Google Research)

  • G. Sterling

    (Google Research)

  • D. Strain

    (Google Research)

  • M. Szalay

    (Google Research)

  • D. Thor

    (Google Research)

  • A. Torres

    (Google Research)

  • G. Vidal

    (Google Research)

  • C. Vollgraff Heidweiller

    (Google Research)

  • T. White

    (Google Research)

  • B. W. K. Woo

    (Google Research)

  • C. Xing

    (Google Research)

  • Z. J. Yao

    (Google Research)

  • P. Yeh

    (Google Research)

  • J. Yoo

    (Google Research)

  • G. Young

    (Google Research)

  • A. Zalcman

    (Google Research)

  • Y. Zhang

    (Google Research)

  • N. Zhu

    (Google Research)

  • N. Zobrist

    (Google Research)

  • E. G. Rieffel

    (NASA Ames Research Center)

  • R. Biswas

    (NASA Ames Research Center)

  • R. Babbush

    (Google Research)

  • D. Bacon

    (Google Research)

  • J. Hilton

    (Google Research)

  • E. Lucero

    (Google Research)

  • H. Neven

    (Google Research)

  • A. Megrant

    (Google Research)

  • J. Kelly

    (Google Research)

  • P. Roushan

    (Google Research)

  • I. Aleiner

    (Google Research)

  • V. Smelyanskiy

    (Google Research)

  • K. Kechedzhi

    (Google Research)

  • Y. Chen

    (Google Research)

  • S. Boixo

    (Google Research)

Abstract

Undesired coupling to the surrounding environment destroys long-range correlations in quantum processors and hinders coherent evolution in the nominally available computational space. This noise is an outstanding challenge when leveraging the computation power of near-term quantum processors1. It has been shown that benchmarking random circuit sampling with cross-entropy benchmarking can provide an estimate of the effective size of the Hilbert space coherently available2–8. Nevertheless, quantum algorithms’ outputs can be trivialized by noise, making them susceptible to classical computation spoofing. Here, by implementing an algorithm for random circuit sampling, we demonstrate experimentally that two phase transitions are observable with cross-entropy benchmarking, which we explain theoretically with a statistical model. The first is a dynamical transition as a function of the number of cycles and is the continuation of the anti-concentration point in the noiseless case. The second is a quantum phase transition controlled by the error per cycle; to identify it analytically and experimentally, we create a weak-link model, which allows us to vary the strength of the noise versus coherent evolution. Furthermore, by presenting a random circuit sampling experiment in the weak-noise phase with 67 qubits at 32 cycles, we demonstrate that the computational cost of our experiment is beyond the capabilities of existing classical supercomputers. Our experimental and theoretical work establishes the existence of transitions to a stable, computationally complex phase that is reachable with current quantum processors.

Suggested Citation

  • A. Morvan & B. Villalonga & X. Mi & S. Mandrà & A. Bengtsson & P. V. Klimov & Z. Chen & S. Hong & C. Erickson & I. K. Drozdov & J. Chau & G. Laun & R. Movassagh & A. Asfaw & L. T. A. N. Brandão & R. P, 2024. "Phase transitions in random circuit sampling," Nature, Nature, vol. 634(8033), pages 328-333, October.
  • Handle: RePEc:nat:nature:v:634:y:2024:i:8033:d:10.1038_s41586-024-07998-6
    DOI: 10.1038/s41586-024-07998-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-024-07998-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-024-07998-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:634:y:2024:i:8033:d:10.1038_s41586-024-07998-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.