Author
Listed:
- Yixin Huang
(The University of Hong Kong)
- Tongyun Wang
(The University of Hong Kong)
- Lijie Zhong
(The University of Hong Kong)
- Wenxin Zhang
(The University of Hong Kong)
- Yu Zhang
(The University of Hong Kong)
- Xiulian Yu
(The Hong Kong Polytechnic University, Hung Hom)
- Shuofeng Yuan
(The University of Hong Kong)
- Tao Ni
(The University of Hong Kong
HKU-SIRI)
Abstract
Coronaviruses remodel the intracellular host membranes during replication, forming double-membrane vesicles (DMVs) to accommodate viral RNA synthesis and modifications1,2. SARS-CoV-2 non-structural protein 3 (nsp3) and nsp4 are the minimal viral components required to induce DMV formation and to form a double-membrane-spanning pore, essential for the transport of newly synthesized viral RNAs3–5. The mechanism of DMV pore complex formation remains unknown. Here we describe the molecular architecture of the SARS-CoV-2 nsp3–nsp4 pore complex, as resolved by cryogenic electron tomography and subtomogram averaging in isolated DMVs. The structures uncover an unexpected stoichiometry and topology of the nsp3–nsp4 pore complex comprising 12 copies each of nsp3 and nsp4, organized in 4 concentric stacking hexamer rings, mimicking a miniature nuclear pore complex. The transmembrane domains are interdigitated to create a high local curvature at the double-membrane junction, coupling double-membrane reorganization with pore formation. The ectodomains form extensive contacts in a pseudo-12-fold symmetry, belting the pore complex from the intermembrane space. A central positively charged ring of arginine residues coordinates the putative RNA translocation, essential for virus replication. Our work establishes a framework for understanding DMV pore formation and RNA translocation, providing a structural basis for the development of new antiviral strategies to combat coronavirus infection.
Suggested Citation
Yixin Huang & Tongyun Wang & Lijie Zhong & Wenxin Zhang & Yu Zhang & Xiulian Yu & Shuofeng Yuan & Tao Ni, 2024.
"Molecular architecture of coronavirus double-membrane vesicle pore complex,"
Nature, Nature, vol. 633(8028), pages 224-231, September.
Handle:
RePEc:nat:nature:v:633:y:2024:i:8028:d:10.1038_s41586-024-07817-y
DOI: 10.1038/s41586-024-07817-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:633:y:2024:i:8028:d:10.1038_s41586-024-07817-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.