IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v632y2024i8027d10.1038_s41586-024-07811-4.html
   My bibliography  Save this article

Catalysis of an SN2 pathway by geometric preorganization

Author

Listed:
  • Gabriel J. Lovinger

    (Harvard University)

  • Marcus H. Sak

    (Harvard University)

  • Eric N. Jacobsen

    (Harvard University)

Abstract

Bimolecular nucleophilic substitution (SN2) mechanisms occupy a central place in the historical development and teaching of the field of organic chemistry1. Despite the importance of SN2 pathways in synthesis, catalytic control of ionic SN2 pathways is rare and notably uncommon even in biocatalysis2,3, reflecting the fact that any electrostatic interaction between a catalyst and the reacting ion pair necessarily stabilizes its charge and, by extension, reduces polar reactivity. Nucleophilic halogenase enzymes navigate this tradeoff by desolvating and positioning the halide nucleophile precisely on the SN2 trajectory, using geometric preorganization to compensate for the attenuation of nucleophilicity4. Here we show that a small-molecule (646 Da) hydrogen-bond-donor catalyst accelerates the SN2 step of an enantioselective Michaelis–Arbuzov reaction by recapitulating the geometric preorganization principle used by enzymes. Mechanistic and computational investigations show that the hydrogen-bond donor diminishes the reactivity of the chloride nucleophile yet accelerates the rate-determining dealkylation step by reorganizing both the phosphonium cation and the chloride anion into a geometry that is primed to enter the SN2 transition state. This new enantioselective Arbuzov reaction affords highly enantioselective access to an array of H-phosphinates, which are in turn versatile P-stereogenic building blocks amenable to myriad derivatizations. This work constitutes, to our knowledge, the first demonstration of catalytic enantiocontrol of the phosphonium dealkylation step, establishing a new platform for the synthesis of P-stereogenic compounds.

Suggested Citation

  • Gabriel J. Lovinger & Marcus H. Sak & Eric N. Jacobsen, 2024. "Catalysis of an SN2 pathway by geometric preorganization," Nature, Nature, vol. 632(8027), pages 1052-1059, August.
  • Handle: RePEc:nat:nature:v:632:y:2024:i:8027:d:10.1038_s41586-024-07811-4
    DOI: 10.1038/s41586-024-07811-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-024-07811-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-024-07811-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:632:y:2024:i:8027:d:10.1038_s41586-024-07811-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.