Author
Abstract
Birds, bats and many insects can tuck their wings against their bodies when at rest and deploy them to power flight. Whereas birds and bats use well-developed pectoral and wing muscles1,2, how insects control their wing deployment and retraction remains unclear because this varies among insect species. Beetles (Coleoptera) display one of the most complex mechanisms. In rhinoceros beetles, Allomyrina dichotoma, wing deployment is initiated by complete release of the elytra and partial release of the hindwings at their bases. Subsequently, the beetle starts flapping, elevates the hindwing bases and unfolds the hindwing tips in an origami-like fashion. Although the origami-like fold has been extensively explored3–8, limited attention has been given to the hindwing base movements, which are believed to be driven by the thoracic muscles5,9–11. Here we demonstrate that rhinoceros beetles can effortlessly deploy their hindwings without necessitating muscular activity. We show that opening the elytra triggers a spring-like partial release of the hindwings from the body, allowing the clearance needed for the subsequent flapping motion that brings the hindwings into the flight position. After flight, the beetle can use the elytra to push the hindwings back into the resting position, further strengthening the hypothesis of passive deployment. We validated the hypothesis using a flapping microrobot that passively deployed its wings for stable, controlled flight and retracted them neatly upon landing, demonstrating a simple, yet effective, approach to the design of insect-like flying micromachines.
Suggested Citation
Hoang-Vu Phan & Hoon Cheol Park & Dario Floreano, 2024.
"Passive wing deployment and retraction in beetles and flapping microrobots,"
Nature, Nature, vol. 632(8027), pages 1067-1072, August.
Handle:
RePEc:nat:nature:v:632:y:2024:i:8027:d:10.1038_s41586-024-07755-9
DOI: 10.1038/s41586-024-07755-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:632:y:2024:i:8027:d:10.1038_s41586-024-07755-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.