IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v630y2024i8018d10.1038_s41586-024-07457-2.html
   My bibliography  Save this article

Titanium:sapphire-on-insulator integrated lasers and amplifiers

Author

Listed:
  • Joshua Yang

    (Stanford University)

  • Kasper Gasse

    (Stanford University
    Ghent University-imec)

  • Daniil M. Lukin

    (Stanford University)

  • Melissa A. Guidry

    (Stanford University)

  • Geun Ho Ahn

    (Stanford University)

  • Alexander D. White

    (Stanford University)

  • Jelena Vučković

    (Stanford University)

Abstract

Titanium:sapphire (Ti:sapphire) lasers have been essential for advancing fundamental research and technological applications, including the development of the optical frequency comb1, two-photon microscopy2 and experimental quantum optics3,4. Ti:sapphire lasers are unmatched in bandwidth and tuning range, yet their use is restricted because of their large size, cost and need for high optical pump powers5. Here we demonstrate a monocrystalline titanium:sapphire-on-insulator (Ti:SaOI) photonics platform that enables dramatic miniaturization, cost reduction and scalability of Ti:sapphire technology. First, through the fabrication of low-loss whispering-gallery-mode resonators, we realize a Ti:sapphire laser operating with an ultralow, sub-milliwatt lasing threshold. Then, through orders-of-magnitude improvement in mode confinement in Ti:SaOI waveguides, we realize an integrated solid-state (that is, non-semiconductor) optical amplifier operating below 1 μm. We demonstrate unprecedented distortion-free amplification of picosecond pulses to peak powers reaching 1.0 kW. Finally, we demonstrate a tunable integrated Ti:sapphire laser, which can be pumped with low-cost, miniature, off-the-shelf green laser diodes. This opens the doors to new modalities of Ti:sapphire lasers, such as massively scalable Ti:sapphire laser-array systems for several applications. As a proof-of-concept demonstration, we use a Ti:SaOI laser array as the sole optical control for a cavity quantum electrodynamics experiment with artificial atoms in silicon carbide6. This work is a key step towards the democratization of Ti:sapphire technology through a three-orders-of-magnitude reduction in cost and footprint and introduces solid-state broadband amplification of sub-micron wavelength light.

Suggested Citation

  • Joshua Yang & Kasper Gasse & Daniil M. Lukin & Melissa A. Guidry & Geun Ho Ahn & Alexander D. White & Jelena Vučković, 2024. "Titanium:sapphire-on-insulator integrated lasers and amplifiers," Nature, Nature, vol. 630(8018), pages 853-859, June.
  • Handle: RePEc:nat:nature:v:630:y:2024:i:8018:d:10.1038_s41586-024-07457-2
    DOI: 10.1038/s41586-024-07457-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-024-07457-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-024-07457-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:630:y:2024:i:8018:d:10.1038_s41586-024-07457-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.