Author
Listed:
- Elisabeth G. Hiis
(Norwegian University of Life Sciences)
- Silas H. W. Vick
(Norwegian University of Life Sciences)
- Lars Molstad
(Norwegian University of Life Sciences)
- Kristine Røsdal
(Norwegian University of Life Sciences)
- Kjell Rune Jonassen
(Veas WWTP)
- Wilfried Winiwarter
(International Institute for Applied Systems Analysis
University of Zielona Góra)
- Lars R. Bakken
(Norwegian University of Life Sciences)
Abstract
Farmed soils contribute substantially to global warming by emitting N2O (ref. 1), and mitigation has proved difficult2. Several microbial nitrogen transformations produce N2O, but the only biological sink for N2O is the enzyme NosZ, catalysing the reduction of N2O to N2 (ref. 3). Although strengthening the NosZ activity in soils would reduce N2O emissions, such bioengineering of the soil microbiota is considered challenging4,5. However, we have developed a technology to achieve this, using organic waste as a substrate and vector for N2O-respiring bacteria selected for their capacity to thrive in soil6–8. Here we have analysed the biokinetics of N2O reduction by our most promising N2O-respiring bacterium, Cloacibacterium sp. CB-01, its survival in soil and its effect on N2O emissions in field experiments. Fertilization with waste from biogas production, in which CB-01 had grown aerobically to about 6 × 109 cells per millilitre, reduced N2O emissions by 50–95%, depending on soil type. The strong and long-lasting effect of CB-01 is ascribed to its tenacity in soil, rather than its biokinetic parameters, which were inferior to those of other strains of N2O-respiring bacteria. Scaling our data up to the European level, we find that national anthropogenic N2O emissions could be reduced by 5–20%, and more if including other organic wastes. This opens an avenue for cost-effective reduction of N2O emissions for which other mitigation options are lacking at present.
Suggested Citation
Elisabeth G. Hiis & Silas H. W. Vick & Lars Molstad & Kristine Røsdal & Kjell Rune Jonassen & Wilfried Winiwarter & Lars R. Bakken, 2024.
"Unlocking bacterial potential to reduce farmland N2O emissions,"
Nature, Nature, vol. 630(8016), pages 421-428, June.
Handle:
RePEc:nat:nature:v:630:y:2024:i:8016:d:10.1038_s41586-024-07464-3
DOI: 10.1038/s41586-024-07464-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:630:y:2024:i:8016:d:10.1038_s41586-024-07464-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.