IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v630y2024i8016d10.1038_s41586-024-07448-3.html
   My bibliography  Save this article

Canted spin order as a platform for ultrafast conversion of magnons

Author

Listed:
  • R. A. Leenders

    (Lancaster University)

  • D. Afanasiev

    (Institute for Molecules and Materials)

  • A. V. Kimel

    (Institute for Molecules and Materials)

  • R. V. Mikhaylovskiy

    (Lancaster University)

Abstract

Traditionally, magnetic solids are divided into two main classes—ferromagnets and antiferromagnets with parallel and antiparallel spin orders, respectively. Although normally the antiferromagnets have zero magnetization, in some of them an additional antisymmetric spin–spin interaction arises owing to a strong spin–orbit coupling and results in canting of the spins, thereby producing net magnetization. The canted antiferromagnets combine antiferromagnetic order with phenomena typical of ferromagnets and hold great potential for spintronics and magnonics1–5. In this way, they can be identified as closely related to the recently proposed new class of magnetic materials called altermagnets6–9. Altermagnets are predicted to have strong magneto-optical effects, terahertz-frequency spin dynamics and degeneracy lifting for chiral spin waves10 (that is, all of the effects present in the canted antiferromagnets11,12). Here, by utilizing these unique phenomena, we demonstrate a new functionality of canted spin order for magnonics and show that it facilitates mechanisms converting a magnon at the centre of the Brillouin zone into propagating magnons using nonlinear magnon–magnon interactions activated by an ultrafast laser pulse. Our experimental findings supported by theoretical analysis show that the mechanism is enabled by the spin canting.

Suggested Citation

  • R. A. Leenders & D. Afanasiev & A. V. Kimel & R. V. Mikhaylovskiy, 2024. "Canted spin order as a platform for ultrafast conversion of magnons," Nature, Nature, vol. 630(8016), pages 335-339, June.
  • Handle: RePEc:nat:nature:v:630:y:2024:i:8016:d:10.1038_s41586-024-07448-3
    DOI: 10.1038/s41586-024-07448-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-024-07448-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-024-07448-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:630:y:2024:i:8016:d:10.1038_s41586-024-07448-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.