IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v629y2024i8011d10.1038_s41586-024-07306-2.html
   My bibliography  Save this article

Multi-project wafers for flexible thin-film electronics by independent foundries

Author

Listed:
  • Hikmet Çeliker

    (KU Leuven
    imec)

  • Wim Dehaene

    (KU Leuven
    imec)

  • Kris Myny

    (KU Leuven
    imec)

Abstract

Flexible and large-area electronics rely on thin-film transistors (TFTs) to make displays1–3, large-area image sensors4–6, microprocessors7–11, wearable healthcare patches12–15, digital microfluidics16,17 and more. Although silicon-based complementary metal–oxide–semiconductor (CMOS) chips are manufactured using several dies on a single wafer and the multi-project wafer concept enables the aggregation of various CMOS chip designs within the same die, TFT fabrication is currently lacking a fully verified, universal design approach. This increases the cost and complexity of manufacturing TFT-based flexible electronics, slowing down their integration into more mature applications and limiting the design complexity achievable by foundries. Here we show a stable and high-yield TFT platform for the fabless manufacturing of two mainstream TFT technologies, wafer-based amorphous indium–gallium–zinc oxide and panel-based low-temperature polycrystalline silicon, two key TFT technologies applicable to flexible substrates. We have designed the iconic 6502 microprocessor in both technologies as a use case to demonstrate and expand the multi-project wafer approach. Enabling the foundry model for TFTs, as an analogy of silicon CMOS technologies, can accelerate the growth and development of applications and technologies based on these devices.

Suggested Citation

  • Hikmet Çeliker & Wim Dehaene & Kris Myny, 2024. "Multi-project wafers for flexible thin-film electronics by independent foundries," Nature, Nature, vol. 629(8011), pages 335-340, May.
  • Handle: RePEc:nat:nature:v:629:y:2024:i:8011:d:10.1038_s41586-024-07306-2
    DOI: 10.1038/s41586-024-07306-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-024-07306-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-024-07306-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:629:y:2024:i:8011:d:10.1038_s41586-024-07306-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.