IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v628y2024i8007d10.1038_s41586-024-07170-0.html
   My bibliography  Save this article

A global timekeeping problem postponed by global warming

Author

Listed:
  • Duncan Carr Agnew

    (University of California San Diego)

Abstract

The historical association of time with the rotation of Earth has meant that Coordinated Universal Time (UTC) closely follows this rotation1. Because the rotation rate is not constant, UTC contains discontinuities (leap seconds), which complicates its use in computer networks2. Since 1972, all UTC discontinuities have required that a leap second be added3. Here we show that increased melting of ice in Greenland and Antarctica, measured by satellite gravity4,5, has decreased the angular velocity of Earth more rapidly than before. Removing this effect from the observed angular velocity shows that since 1972, the angular velocity of the liquid core of Earth has been decreasing at a constant rate that has steadily increased the angular velocity of the rest of the Earth. Extrapolating the trends for the core and other relevant phenomena to predict future Earth orientation shows that UTC as now defined will require a negative discontinuity by 2029. This will pose an unprecedented problem for computer network timing and may require changes in UTC to be made earlier than is planned. If polar ice melting had not recently accelerated, this problem would occur 3 years earlier: global warming is already affecting global timekeeping.

Suggested Citation

  • Duncan Carr Agnew, 2024. "A global timekeeping problem postponed by global warming," Nature, Nature, vol. 628(8007), pages 333-336, April.
  • Handle: RePEc:nat:nature:v:628:y:2024:i:8007:d:10.1038_s41586-024-07170-0
    DOI: 10.1038/s41586-024-07170-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-024-07170-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-024-07170-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:628:y:2024:i:8007:d:10.1038_s41586-024-07170-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.