IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v626y2024i7999d10.1038_s41586-023-06954-0.html
   My bibliography  Save this article

The energetic and allosteric landscape for KRAS inhibition

Author

Listed:
  • Chenchun Weng

    (The Barcelona Institute of Science and Technology)

  • Andre J. Faure

    (The Barcelona Institute of Science and Technology)

  • Albert Escobedo

    (The Barcelona Institute of Science and Technology)

  • Ben Lehner

    (The Barcelona Institute of Science and Technology
    University Pompeu Fabra (UPF)
    Institució Catalana de Recerca i Estudis Avançats (ICREA)
    Wellcome Sanger Institute, Wellcome Genome Campus)

Abstract

Thousands of proteins have been validated genetically as therapeutic targets for human diseases1. However, very few have been successfully targeted, and many are considered ‘undruggable’. This is particularly true for proteins that function via protein–protein interactions—direct inhibition of binding interfaces is difficult and requires the identification of allosteric sites. However, most proteins have no known allosteric sites, and a comprehensive allosteric map does not exist for any protein. Here we address this shortcoming by charting multiple global atlases of inhibitory allosteric communication in KRAS. We quantified the effects of more than 26,000 mutations on the folding of KRAS and its binding to six interaction partners. Genetic interactions in double mutants enabled us to perform biophysical measurements at scale, inferring more than 22,000 causal free energy changes. These energy landscapes quantify how mutations tune the binding specificity of a signalling protein and map the inhibitory allosteric sites for an important therapeutic target. Allosteric propagation is particularly effective across the central β-sheet of KRAS, and multiple surface pockets are genetically validated as allosterically active, including a distal pocket in the C-terminal lobe of the protein. Allosteric mutations typically inhibit binding to all tested effectors, but they can also change the binding specificity, revealing the regulatory, evolutionary and therapeutic potential to tune pathway activation. Using the approach described here, it should be possible to rapidly and comprehensively identify allosteric target sites in many proteins.

Suggested Citation

  • Chenchun Weng & Andre J. Faure & Albert Escobedo & Ben Lehner, 2024. "The energetic and allosteric landscape for KRAS inhibition," Nature, Nature, vol. 626(7999), pages 643-652, February.
  • Handle: RePEc:nat:nature:v:626:y:2024:i:7999:d:10.1038_s41586-023-06954-0
    DOI: 10.1038/s41586-023-06954-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06954-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06954-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johanna M. Kohlmayr & Gernot F. Grabner & Anna Nusser & Anna Höll & Verina Manojlović & Bettina Halwachs & Sarah Masser & Evelyne Jany-Luig & Hanna Engelke & Robert Zimmermann & Ulrich Stelzl, 2024. "Mutational scanning pinpoints distinct binding sites of key ATGL regulators in lipolysis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:626:y:2024:i:7999:d:10.1038_s41586-023-06954-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.